浏览代码

changed mild model, added maxpooling

Nicolasticot 5 年前
父节点
当前提交
860e797732
共有 2 个文件被更改,包括 418 次插入107 次删除
  1. 203 107
      DeepDrug.ipynb
  2. 215 0
      DeepDrug.py

+ 203 - 107
DeepDrug.ipynb 查看文件

@@ -7,26 +7,25 @@
7 7
     "# DeepDrug3D"
8 8
    ]
9 9
   },
10
+  {
11
+   "cell_type": "markdown",
12
+   "metadata": {},
13
+   "source": [
14
+    "## Importing library"
15
+   ]
16
+  },
10 17
   {
11 18
    "cell_type": "code",
12
-   "execution_count": 1,
13
-   "metadata": {},
14
-   "outputs": [
15
-    {
16
-     "name": "stderr",
17
-     "output_type": "stream",
18
-     "text": [
19
-      "Using TensorFlow backend.\n"
20
-     ]
21
-    }
22
-   ],
19
+   "execution_count": null,
20
+   "metadata": {},
21
+   "outputs": [],
23 22
    "source": [
24 23
     "import numpy as np\n",
25
-    "\n",
24
+    "import tensorflow as tf\n",
26 25
     "from sklearn.preprocessing import LabelEncoder\n",
27 26
     "from keras.models import Sequential\n",
28
-    "from keras import optimizers\n",
29
-    "from keras.layers import Dense, Flatten, TimeDistributedn, Dropout\n",
27
+    "from keras import optimizers, callbacks\n",
28
+    "from keras.layers import Dense, Flatten, TimeDistributed, Dropout\n",
30 29
     "from keras import Input, Model\n",
31 30
     "from keras.layers import add, Activation\n",
32 31
     "#from keras.utils import plot_model  # Needs pydot.\n",
@@ -37,50 +36,20 @@
37 36
    "cell_type": "markdown",
38 37
    "metadata": {},
39 38
    "source": [
40
-    "## Create pocket lists\n",
41
-    "4 pockets are created :\n",
42
-    "  + control\n",
43
-    "  + steroid\n",
44
-    "  + heme\n",
45
-    "  + nucleotide"
39
+    "### used to store model prediction in order to plot roc curve"
46 40
    ]
47 41
   },
48 42
   {
49 43
    "cell_type": "code",
50
-   "execution_count": 2,
51
-   "metadata": {},
52
-   "outputs": [
53
-    {
54
-     "data": {
55
-      "text/plain": [
56
-       "''"
57
-      ]
58
-     },
59
-     "execution_count": 2,
60
-     "metadata": {},
61
-     "output_type": "execute_result"
62
-    }
63
-   ],
64
-   "source": [
65
-    "with open(\"control.list\", \"r\") as filin:\n",
66
-    "    control = filin.read()\n",
67
-    "control = control.split(\"\\n\")\n",
68
-    "control.pop()\n",
69
-    "\n",
70
-    "with open(\"steroid.list\", \"r\") as filin:\n",
71
-    "    steroid = filin.read()\n",
72
-    "steroid = steroid.split(\"\\n\")\n",
73
-    "steroid.pop()\n",
74
-    "\n",
75
-    "with open(\"heme.list\", \"r\") as filin:\n",
76
-    "    heme = filin.read()\n",
77
-    "heme = heme.split(\"\\n\")\n",
78
-    "heme.pop()\n",
79
-    "\n",
80
-    "with open(\"nucleotide.list\", \"r\") as filin:\n",
81
-    "    nucleotide = filin.read()\n",
82
-    "nucleotide = nucleotide.split(\"\\n\")\n",
83
-    "nucleotide.pop()"
44
+   "execution_count": null,
45
+   "metadata": {},
46
+   "outputs": [],
47
+   "source": [
48
+    "class prediction_history(callbacks.Callback):\n",
49
+    "    def __init__(self):\n",
50
+    "        self.predhis = []\n",
51
+    "    def on_epoch_end(self, epoch, logs={}):\n",
52
+    "        self.predhis.append(model.predict(predictor_train))"
84 53
    ]
85 54
   },
86 55
   {
@@ -92,85 +61,132 @@
92 61
   },
93 62
   {
94 63
    "cell_type": "code",
95
-   "execution_count": 3,
64
+   "execution_count": null,
96 65
    "metadata": {},
97 66
    "outputs": [],
98 67
    "source": [
99
-    "data_onehot = np.ndarray(shape=(2219, 14, 32, 32, 32)) # initializing empty array\n",
100
-    "indices = np.random.permutation(2219)\n",
101
-    "output = np.ndarray(shape=(2219, 3)) # softmax 3, {steroid=1, heme=1, nucleotide=1}\n",
102
-    "lmin = len(steroid)\n",
103
-    "lmid = len(heme)\n",
104
-    "lmax = len(nucleotide)"
68
+    "def in_out_lists(size=1000):\n",
69
+    "    \"\"\"\n",
70
+    "    returns a tuple of array used as input and output for the model\n",
71
+    "    Arguments:\n",
72
+    "        - size, int: default 1000, size of the lists to be created\n",
73
+    "        \n",
74
+    "    Returns:\n",
75
+    "        - tuple (data_onehot, output):\n",
76
+    "            -data_onehot, ndarray: containing one-hot encoded pockets\n",
77
+    "            -output, ndarray: containing size-3 vectors for classification\n",
78
+    "    \"\"\"\n",
79
+    "    with open(\"control.list\", \"r\") as filin:\n",
80
+    "        control = filin.read()\n",
81
+    "        control = control.split(\"\\n\")\n",
82
+    "        control.pop()\n",
83
+    "\n",
84
+    "    with open(\"steroid.list\", \"r\") as filin:\n",
85
+    "        steroid = filin.read()\n",
86
+    "        steroid = steroid.split(\"\\n\")\n",
87
+    "        steroid.pop()\n",
88
+    "\n",
89
+    "    with open(\"heme.list\", \"r\") as filin:\n",
90
+    "        heme = filin.read()\n",
91
+    "        heme = heme.split(\"\\n\")\n",
92
+    "        heme.pop()\n",
93
+    "\n",
94
+    "    with open(\"nucleotide.list\", \"r\") as filin:\n",
95
+    "        nucleotide = filin.read()\n",
96
+    "        nucleotide = nucleotide.split(\"\\n\")\n",
97
+    "        nucleotide.pop()\n",
98
+    "    \n",
99
+    "    lmin = len(heme)\n",
100
+    "    lmid = len(nucleotide)\n",
101
+    "    lmax = len(control)\n",
102
+    "    tot_size = lmin + lmid + lmax\n",
103
+    "    data_onehot = np.ndarray(shape=(size, 14, 32, 32, 32)) # initializing empty array\n",
104
+    "\n",
105
+    "    np.random.seed(9001)\n",
106
+    "    indices = np.random.permutation(tot_size)\n",
107
+    "    indices = indices[:size]\n",
108
+    "    output = np.ndarray(shape=(size, 3)) # softmax 3, {steroid=1, heme=1, nucleotide=1}\n",
109
+    "\n",
110
+    "    n = -1\n",
111
+    "    for i in indices:\n",
112
+    "        n += 1\n",
113
+    "        if i < lmin:\n",
114
+    "            data_onehot[n,] = np.load(\"deepdrug3d_voxel_data/\"+heme[i]+\".npy\")\n",
115
+    "            output[n,] = [1,0,0]\n",
116
+    "        elif i > lmin and i < (lmin + lmid):\n",
117
+    "            data_onehot[n,] = np.load(\"deepdrug3d_voxel_data/\"+nucleotide[i - lmin]+\".npy\")\n",
118
+    "            output[n,] = [0,1,0]\n",
119
+    "        else:\n",
120
+    "            data_onehot[n,] = np.load(\"deepdrug3d_voxel_data/\"+control[i - (lmin+lmid) - 1]+\".npy\")\n",
121
+    "            output[n,] = [0,0,1]\n",
122
+    "    \n",
123
+    "    return (data_onehot, output)"
105 124
    ]
106 125
   },
107 126
   {
108
-   "cell_type": "code",
109
-   "execution_count": 4,
127
+   "cell_type": "markdown",
110 128
    "metadata": {},
111
-   "outputs": [],
112 129
    "source": [
113
-    "n = -1\n",
114
-    "for i in indices:\n",
115
-    "    n += 1\n",
116
-    "    if i < lmin:\n",
117
-    "        data_onehot[n,] = np.load(\"deepdrug3d_voxel_data/\"+steroid[i]+\".npy\")\n",
118
-    "        output[n,] = [1,0,0]\n",
119
-    "    elif i > lmin and i < (lmin + lmid):\n",
120
-    "        data_onehot[n,] = np.load(\"deepdrug3d_voxel_data/\"+heme[i - lmin]+\".npy\")\n",
121
-    "        output[n,] = [0,1,0]\n",
122
-    "    else:\n",
123
-    "        data_onehot[n,] = np.load(\"deepdrug3d_voxel_data/\"+nucleotide[i - (lmin+lmid) - 1]+\".npy\")\n",
124
-    "        output[n,] = [0,0,1]"
130
+    "### Defining different model to test and compare"
125 131
    ]
126 132
   },
127 133
   {
128 134
    "cell_type": "code",
129
-   "execution_count": 5,
135
+   "execution_count": null,
130 136
    "metadata": {},
131 137
    "outputs": [],
132 138
    "source": [
133
-    "X_train = data_onehot[0:1664,]\n",
134
-    "Y_train = output[0:1664,]\n",
135
-    "X_test = data_onehot[1664:,]\n",
136
-    "Y_test = output[1664:,]"
139
+    "def model_heavy(): # créer un objet modèle\n",
140
+    "    \"\"\"\n",
141
+    "    Return a simple sequentiel model\n",
142
+    "    \n",
143
+    "    Returns :\n",
144
+    "        - model : keras.Model\n",
145
+    "    \"\"\"\n",
146
+    "    inputs = Input(shape=(14,32,32,32))\n",
147
+    "    conv_1 = Conv3D(64, (28, 28, 28), padding=\"same\", activation=\"relu\", kernel_initializer=\"he_normal\")(inputs)\n",
148
+    "    conv_2 = Conv3D(64, (26, 26, 26), padding=\"same\", activation=\"relu\", kernel_initializer=\"he_normal\")(conv_1)\n",
149
+    "    drop_1 = Dropout(0.2)(conv_2)\n",
150
+    "    maxpool = MaxPooling3D()(drop_1)\n",
151
+    "    drop_2 = Dropout(0.4)(maxpool)\n",
152
+    "    dense = Dense(512)(drop_2)\n",
153
+    "    drop_3 = Dropout(0.4)(dense)\n",
154
+    "    flatters = Flatten()(drop_3)\n",
155
+    "    #output = TimeDistributed(Dense(3, activation='softmax'))(drop_3)\n",
156
+    "    output = Dense(3, activation='softmax')(flatters)\n",
157
+    "    model = Model(inputs=inputs, outputs=output)\n",
158
+    "    my_opt = optimizers.Adam(learning_rate=0.000001, beta_1=0.9, beta_2=0.999, amsgrad=False)\n",
159
+    "    print(model.summary)\n",
160
+    "    model.compile(optimizer=my_opt, loss=\"categorical_crossentropy\",\n",
161
+    "                  metrics=[\"accuracy\"])\n",
162
+    "    return model"
137 163
    ]
138 164
   },
139 165
   {
140 166
    "cell_type": "code",
141
-   "execution_count": 14,
142
-   "metadata": {},
143
-   "outputs": [
144
-    {
145
-     "data": {
146
-      "text/plain": [
147
-       "(1, 14, 32, 32, 32)"
148
-      ]
149
-     },
150
-     "execution_count": 14,
151
-     "metadata": {},
152
-     "output_type": "execute_result"
153
-    }
154
-   ],
155
-   "source": [
156
-    "def model_sequential(): # créer un objet modèle\n",
167
+   "execution_count": null,
168
+   "metadata": {},
169
+   "outputs": [],
170
+   "source": [
171
+    "def model_light(): # créer un objet modèle\n",
157 172
     "    \"\"\"\n",
158 173
     "    Return a simple sequentiel model\n",
159 174
     "    \n",
160 175
     "    Returns :\n",
161 176
     "        - model : keras.Model\n",
162 177
     "    \"\"\"\n",
163
-    "    inputs = Input(shape=(32,32,32,14)) # 759 aa, 21 car onehot\n",
164
-    "    conv_1 = Conv3D(64, (28, 28, 28), padding=\"same\", activation=\"LeakyReLU\",\n",
165
-    "                        kernel_initializer=\"he_normal\")(inputs)\n",
166
-    "    conv_2 = Conv3D(64, (26, 26, 26), padding=\"same\", activation=\"LeakyReLU\",\n",
167
-    "                        kernel_initializer=\"he_normal\")(conv_1)\n",
178
+    "    inputs = Input(shape=(14,32,32,32))\n",
179
+    "    conv_1 = Conv3D(32, (28, 28, 28), padding=\"same\", activation=\"relu\", kernel_initializer=\"he_normal\")(inputs)\n",
180
+    "    conv_2 = Conv3D(64, (26, 26, 26), padding=\"same\", activation=\"relu\", kernel_initializer=\"he_normal\")(conv_1)\n",
168 181
     "    drop_1 = Dropout(0.2)(conv_2)\n",
169 182
     "    maxpool = MaxPooling3D()(drop_1)\n",
170
-    "    drop_2 = Dropout(0.4)(maxpool)\n",
171
-    "    dense = Dense(512)(drop_2)\n",
172
-    "    drop_3 = Dropout(0.4)(dense)\n",
173
-    "    output = TimeDistributed(Dense(3, activation='softmax'))(drop_3)\n",
183
+    "    drop_2 = Dropout(0.3)(maxpool)\n",
184
+    "    maxpool_2 = MaxPooling3D()(drop_2)\n",
185
+    "    drop_3 = Dropout(0.3)(maxpool_2)\n",
186
+    "    dense = Dense(256)(drop_3)\n",
187
+    "    drop_4 = Dropout(0.4)(dense)\n",
188
+    "    flatters = Flatten()(drop_4)\n",
189
+    "    output = Dense(3, activation='softmax')(flatters)\n",
174 190
     "    model = Model(inputs=inputs, outputs=output)\n",
175 191
     "    my_opt = optimizers.Adam(learning_rate=0.000001, beta_1=0.9, beta_2=0.999, amsgrad=False)\n",
176 192
     "    print(model.summary)\n",
@@ -179,12 +195,92 @@
179 195
     "    return model"
180 196
    ]
181 197
   },
198
+  {
199
+   "cell_type": "markdown",
200
+   "metadata": {},
201
+   "source": [
202
+    "## Create pocket lists\n",
203
+    "4 lists are created :\n",
204
+    "  + control\n",
205
+    "  + steroid\n",
206
+    "  + heme\n",
207
+    "  + nucleotide"
208
+   ]
209
+  },
210
+  {
211
+   "cell_type": "code",
212
+   "execution_count": null,
213
+   "metadata": {},
214
+   "outputs": [],
215
+   "source": [
216
+    "data = in_out_lists(1400)\n",
217
+    "pockets = np.cumsum(data[1], axis=0)[-1]"
218
+   ]
219
+  },
220
+  {
221
+   "cell_type": "code",
222
+   "execution_count": null,
223
+   "metadata": {},
224
+   "outputs": [],
225
+   "source": [
226
+    "print(\"with random seed=9001 and a 1400 pockets dataset the rates are:\\n\\\n",
227
+    "      {} heme, {} nucleotide, {} control\\n\\\n",
228
+    "      Total avaible dataset are composed of the following proportions:\\n\\\n",
229
+    "      {} heme, {} nucleotide, {} control\".format(pockets[0]/1400, pockets[1]/1400,pockets[2]/1400,\n",
230
+    "                                                0.145, 0.380, 0.475))"
231
+   ]
232
+  },
233
+  {
234
+   "cell_type": "code",
235
+   "execution_count": null,
236
+   "metadata": {},
237
+   "outputs": [],
238
+   "source": [
239
+    "data_onehot = data[0]\n",
240
+    "output = data[1]\n",
241
+    "X_train = data_onehot[0:1000,]\n",
242
+    "Y_train = output[0:1000,]\n",
243
+    "X_test = data_onehot[1000:,]\n",
244
+    "Y_test = output[1000:,]"
245
+   ]
246
+  },
247
+  {
248
+   "cell_type": "code",
249
+   "execution_count": null,
250
+   "metadata": {},
251
+   "outputs": [],
252
+   "source": [
253
+    "my_model = model_light()"
254
+   ]
255
+  },
256
+  {
257
+   "cell_type": "code",
258
+   "execution_count": null,
259
+   "metadata": {},
260
+   "outputs": [],
261
+   "source": [
262
+    "tf.test.is_gpu_available()\n",
263
+    "#my_model.fit(X_train, Y_train, epochs=50, batch_size=30)"
264
+   ]
265
+  },
182 266
   {
183 267
    "cell_type": "code",
184 268
    "execution_count": null,
185 269
    "metadata": {},
186 270
    "outputs": [],
187
-   "source": []
271
+   "source": [
272
+    "history_mild_2mp = mild_model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=30, batch_size=32)\n",
273
+    "my_model.save('light_model_2mp_e30_b32.h5')"
274
+   ]
275
+  },
276
+  {
277
+   "cell_type": "code",
278
+   "execution_count": null,
279
+   "metadata": {},
280
+   "outputs": [],
281
+   "source": [
282
+    "#predictions=prediction_history()"
283
+   ]
188 284
   }
189 285
  ],
190 286
  "metadata": {

+ 215 - 0
DeepDrug.py 查看文件

@@ -0,0 +1,215 @@
1
+#!/usr/bin/env python
2
+# coding: utf-8
3
+
4
+# # DeepDrug3D
5
+
6
+# ## Importing library
7
+
8
+# In[ ]:
9
+
10
+
11
+import numpy as np
12
+import tensorflow as tf
13
+from sklearn.preprocessing import LabelEncoder
14
+from keras.models import Sequential
15
+from keras import optimizers, callbacks
16
+from keras.layers import Dense, Flatten, TimeDistributed, Dropout
17
+from keras import Input, Model
18
+from keras.layers import add, Activation
19
+#from keras.utils import plot_model  # Needs pydot.
20
+from keras.layers import Conv3D, MaxPooling3D
21
+
22
+
23
+# ### used to store model prediction in order to plot roc curve
24
+
25
+# In[ ]:
26
+
27
+
28
+class prediction_history(callbacks.Callback):
29
+    def __init__(self):
30
+        self.predhis = []
31
+    def on_epoch_end(self, epoch, logs={}):
32
+        self.predhis.append(model.predict(predictor_train))
33
+
34
+
35
+# ### Creating input and ouputs
36
+
37
+# In[ ]:
38
+
39
+
40
+def in_out_lists(size=1000):
41
+    """
42
+    returns a tuple of array used as input and output for the model
43
+    Arguments:
44
+        - size, int: default 1000, size of the lists to be created
45
+        
46
+    Returns:
47
+        - tuple (data_onehot, output):
48
+            -data_onehot, ndarray: containing one-hot encoded pockets
49
+            -output, ndarray: containing size-3 vectors for classification
50
+    """
51
+    with open("control.list", "r") as filin:
52
+        control = filin.read()
53
+        control = control.split("\n")
54
+        control.pop()
55
+
56
+    with open("steroid.list", "r") as filin:
57
+        steroid = filin.read()
58
+        steroid = steroid.split("\n")
59
+        steroid.pop()
60
+
61
+    with open("heme.list", "r") as filin:
62
+        heme = filin.read()
63
+        heme = heme.split("\n")
64
+        heme.pop()
65
+
66
+    with open("nucleotide.list", "r") as filin:
67
+        nucleotide = filin.read()
68
+        nucleotide = nucleotide.split("\n")
69
+        nucleotide.pop()
70
+    
71
+    lmin = len(heme)
72
+    lmid = len(nucleotide)
73
+    lmax = len(control)
74
+    tot_size = lmin + lmid + lmax
75
+    data_onehot = np.ndarray(shape=(size, 14, 32, 32, 32)) # initializing empty array
76
+
77
+    np.random.seed(9001)
78
+    indices = np.random.permutation(tot_size)
79
+    indices = indices[:size]
80
+    output = np.ndarray(shape=(size, 3)) # softmax 3, {steroid=1, heme=1, nucleotide=1}
81
+
82
+    n = -1
83
+    for i in indices:
84
+        n += 1
85
+        if i < lmin:
86
+            data_onehot[n,] = np.load("deepdrug3d_voxel_data/"+heme[i]+".npy")
87
+            output[n,] = [1,0,0]
88
+        elif i > lmin and i < (lmin + lmid):
89
+            data_onehot[n,] = np.load("deepdrug3d_voxel_data/"+nucleotide[i - lmin]+".npy")
90
+            output[n,] = [0,1,0]
91
+        else:
92
+            data_onehot[n,] = np.load("deepdrug3d_voxel_data/"+control[i - (lmin+lmid) - 1]+".npy")
93
+            output[n,] = [0,0,1]
94
+    
95
+    return (data_onehot, output)
96
+
97
+
98
+# ### Defining different model to test and compare
99
+
100
+# In[ ]:
101
+
102
+
103
+def model_heavy(): # créer un objet modèle
104
+    """
105
+    Return a simple sequentiel model
106
+    
107
+    Returns :
108
+        - model : keras.Model
109
+    """
110
+    inputs = Input(shape=(14,32,32,32))
111
+    conv_1 = Conv3D(64, (28, 28, 28), padding="same", activation="relu", kernel_initializer="he_normal")(inputs)
112
+    conv_2 = Conv3D(64, (26, 26, 26), padding="same", activation="relu", kernel_initializer="he_normal")(conv_1)
113
+    drop_1 = Dropout(0.2)(conv_2)
114
+    maxpool = MaxPooling3D()(drop_1)
115
+    drop_2 = Dropout(0.4)(maxpool)
116
+    dense = Dense(512)(drop_2)
117
+    drop_3 = Dropout(0.4)(dense)
118
+    flatters = Flatten()(drop_3)
119
+    #output = TimeDistributed(Dense(3, activation='softmax'))(drop_3)
120
+    output = Dense(3, activation='softmax')(flatters)
121
+    model = Model(inputs=inputs, outputs=output)
122
+    my_opt = optimizers.Adam(learning_rate=0.000001, beta_1=0.9, beta_2=0.999, amsgrad=False)
123
+    print(model.summary)
124
+    model.compile(optimizer=my_opt, loss="categorical_crossentropy",
125
+                  metrics=["accuracy"])
126
+    return model
127
+
128
+
129
+# In[ ]:
130
+
131
+
132
+def model_light(): # créer un objet modèle
133
+    """
134
+    Return a simple sequentiel model
135
+    
136
+    Returns :
137
+        - model : keras.Model
138
+    """
139
+    inputs = Input(shape=(14,32,32,32))
140
+    conv_1 = Conv3D(32, (28, 28, 28), padding="same", activation="relu", kernel_initializer="he_normal")(inputs)
141
+    conv_2 = Conv3D(64, (26, 26, 26), padding="same", activation="relu", kernel_initializer="he_normal")(conv_1)
142
+    drop_1 = Dropout(0.2)(conv_2)
143
+    maxpool = MaxPooling3D()(drop_1)
144
+    drop_2 = Dropout(0.3)(maxpool)
145
+    maxpool_2 = MaxPooling3D()(drop_2)
146
+    drop_3 = Dropout(0.3)(maxpool_2)
147
+    dense = Dense(256)(drop_3)
148
+    drop_4 = Dropout(0.4)(dense)
149
+    flatters = Flatten()(drop_4)
150
+    output = Dense(3, activation='softmax')(flatters)
151
+    model = Model(inputs=inputs, outputs=output)
152
+    my_opt = optimizers.Adam(learning_rate=0.000001, beta_1=0.9, beta_2=0.999, amsgrad=False)
153
+    print(model.summary)
154
+    model.compile(optimizer=my_opt, loss="categorical_crossentropy",
155
+                  metrics=["accuracy"])
156
+    return model
157
+
158
+
159
+# ## Create pocket lists
160
+# 4 lists are created :
161
+#   + control
162
+#   + steroid
163
+#   + heme
164
+#   + nucleotide
165
+
166
+# In[ ]:
167
+
168
+
169
+data = in_out_lists(1400)
170
+pockets = np.cumsum(data[1], axis=0)[-1]
171
+
172
+
173
+# In[ ]:
174
+
175
+
176
+print("with random seed=9001 and a 1400 pockets dataset the rates are:\n      {} heme, {} nucleotide, {} control\n      Total avaible dataset are composed of the following proportions:\n      {} heme, {} nucleotide, {} control".format(pockets[0]/1400, pockets[1]/1400,pockets[2]/1400,
177
+                                                0.145, 0.380, 0.475))
178
+
179
+
180
+# In[ ]:
181
+
182
+
183
+data_onehot = data[0]
184
+output = data[1]
185
+X_train = data_onehot[0:1000,]
186
+Y_train = output[0:1000,]
187
+X_test = data_onehot[1000:,]
188
+Y_test = output[1000:,]
189
+
190
+
191
+# In[ ]:
192
+
193
+
194
+my_model = model_light()
195
+
196
+
197
+# In[ ]:
198
+
199
+
200
+tf.test.is_gpu_available()
201
+#my_model.fit(X_train, Y_train, epochs=50, batch_size=30)
202
+
203
+
204
+# In[ ]:
205
+
206
+
207
+history_mild_2mp = my_model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=30, batch_size=32)
208
+my_model.save('light_model_2mp_e30_b32.h5')
209
+
210
+
211
+# In[ ]:
212
+
213
+
214
+#predictions=prediction_history()
215
+