|
|
|
|
176
|
ax1.set_title(title)
|
176
|
ax1.set_title(title)
|
177
|
breaks = len(full_dict['all_epochs']['plots'])
|
177
|
breaks = len(full_dict['all_epochs']['plots'])
|
178
|
if ax is None:
|
178
|
if ax is None:
|
179
|
- plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
|
|
|
|
179
|
+ plt.savefig(title+'_'+str(breaks+1)+'_epochs.pdf')
|
180
|
# plot likelihood against nb of breakpoints
|
180
|
# plot likelihood against nb of breakpoints
|
181
|
if ax is None:
|
181
|
if ax is None:
|
182
|
fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
182
|
fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
|
|
|
184
|
else:
|
184
|
else:
|
185
|
#plt.rcParams['font.size'] = fnt_size
|
185
|
#plt.rcParams['font.size'] = fnt_size
|
186
|
ax2 = ax[0][0,1]
|
186
|
ax2 = ax[0][0,1]
|
187
|
-
|
|
|
188
|
- ax2.plot(full_dict['Ln_Brks'][0], full_dict['Ln_Brks'][1], 'o', linestyle = "dotted", lw=2)
|
|
|
|
|
187
|
+ # Retrieve the default color cycle from rcParams
|
|
|
188
|
+ default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
|
|
|
189
|
+ # Create an array of colors from the default color cycle
|
|
|
190
|
+ colors = [default_colors[i % len(default_colors)] for i in range(len(full_dict['Ln_Brks'][0]))]
|
|
|
191
|
+ ax2.plot(full_dict['Ln_Brks'][0], full_dict['Ln_Brks'][1], "--", lw=1, color="black", zorder=1)
|
|
|
192
|
+ ax2.scatter(full_dict['Ln_Brks'][0], full_dict['Ln_Brks'][1], s=50, c=colors, marker='o', zorder=2)
|
189
|
ax2.axhline(y=full_dict['best_Ln'], linestyle = "-.", color = "red", label = "$-\log\mathcal{L}$ = "+str(round(full_dict['best_Ln'], 2)))
|
193
|
ax2.axhline(y=full_dict['best_Ln'], linestyle = "-.", color = "red", label = "$-\log\mathcal{L}$ = "+str(round(full_dict['best_Ln'], 2)))
|
190
|
ax2.set_yscale('log')
|
194
|
ax2.set_yscale('log')
|
191
|
ax2.set_xlabel("# breakpoints", fontsize=fnt_size)
|
195
|
ax2.set_xlabel("# breakpoints", fontsize=fnt_size)
|
|
|
|
|
202
|
#plt.rcParams['font.size'] = fnt_size
|
206
|
#plt.rcParams['font.size'] = fnt_size
|
203
|
ax3 = ax[1][0,1]
|
207
|
ax3 = ax[1][0,1]
|
204
|
AIC = full_dict['AIC_Brks']
|
208
|
AIC = full_dict['AIC_Brks']
|
205
|
- ax3.plot(AIC[0], AIC[1], 'o', linestyle = "dotted", lw=2)
|
|
|
|
|
209
|
+ # ax3.plot(AIC[0], AIC[1], 'o', linestyle = "dotted", lw=2)
|
|
|
210
|
+ ax3.plot(AIC[0], AIC[1], "--", lw=1, color="black", zorder=1)
|
|
|
211
|
+ ax3.scatter(AIC[0], AIC[1], s=50, c=colors, marker='o', zorder=2)
|
206
|
ax3.axhline(y=full_dict['best_AIC'], linestyle = "-.", color = "red",
|
212
|
ax3.axhline(y=full_dict['best_AIC'], linestyle = "-.", color = "red",
|
207
|
label = "Min. AIC = "+str(round(full_dict['best_AIC'], 2)))
|
213
|
label = "Min. AIC = "+str(round(full_dict['best_AIC'], 2)))
|
208
|
ax3.set_yscale('log')
|
214
|
ax3.set_yscale('log')
|
|
|
|
|
341
|
for file_name in os.listdir(folder_path):
|
347
|
for file_name in os.listdir(folder_path):
|
342
|
cpt +=1
|
348
|
cpt +=1
|
343
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
349
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
344
|
- for k in range(breaks_max):
|
|
|
|
|
350
|
+ for k in range(breaks_max+1):
|
345
|
x,y,likelihood,thetas,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = k,
|
351
|
x,y,likelihood,thetas,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = k,
|
346
|
tgen = tgen,
|
352
|
tgen = tgen,
|
347
|
mu = mu, relative_theta_scale = theta_scale)
|
353
|
mu = mu, relative_theta_scale = theta_scale)
|
|
|
|
|
443
|
return saved_plots
|
449
|
return saved_plots
|
444
|
|
450
|
|
445
|
def plot_scaled_theta(plot_lines, prop, title, mu, tgen, swp2_lines = None, ax = None, n_ticks = 10, subset = None, theta_scale = False):
|
451
|
def plot_scaled_theta(plot_lines, prop, title, mu, tgen, swp2_lines = None, ax = None, n_ticks = 10, subset = None, theta_scale = False):
|
|
|
452
|
+ # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
|
|
453
|
+ nb_epochs = len(plot_lines)
|
446
|
# fig 2 & 3
|
454
|
# fig 2 & 3
|
447
|
if ax is None:
|
455
|
if ax is None:
|
448
|
my_dpi = 500
|
456
|
my_dpi = 500
|
|
|
|
|
463
|
swp2_lines[0][k] = swp2_lines[0][k]/tgen*mu
|
471
|
swp2_lines[0][k] = swp2_lines[0][k]/tgen*mu
|
464
|
for k in range(len(swp2_lines[1])):
|
472
|
for k in range(len(swp2_lines[1])):
|
465
|
swp2_lines[1][k] = swp2_lines[1][k]*4*mu
|
473
|
swp2_lines[1][k] = swp2_lines[1][k]*4*mu
|
466
|
- # plot_lines = [[swp2_lines[0], swp2_lines[1]]]+plot_lines
|
|
|
467
|
-
|
|
|
468
|
x2_plot, y2_plot = plot_straight_x_y(swp2_lines[0],swp2_lines[1])
|
474
|
x2_plot, y2_plot = plot_straight_x_y(swp2_lines[0],swp2_lines[1])
|
469
|
- p2, = ax2.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2')
|
|
|
|
|
475
|
+ p2, = ax2.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2', color="black")
|
470
|
lines_fig2.append(p2)
|
476
|
lines_fig2.append(p2)
|
471
|
# Plotting (fig 3) which is the same but log scale for x
|
477
|
# Plotting (fig 3) which is the same but log scale for x
|
472
|
- p3, = ax3.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2')
|
|
|
|
|
478
|
+ p3, = ax3.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2', color="black")
|
473
|
lines_fig3.append(p3)
|
479
|
lines_fig3.append(p3)
|
474
|
- nb_breaks = len(plot_lines)
|
|
|
475
|
for breaks, plot in enumerate(plot_lines):
|
480
|
for breaks, plot in enumerate(plot_lines):
|
476
|
- if subset is not None:
|
|
|
477
|
- if breaks not in subset :
|
|
|
478
|
- # skip if not in subset
|
|
|
479
|
- if max(subset) > nb_breaks and breaks == nb_breaks:
|
|
|
480
|
- pass
|
|
|
481
|
- else:
|
|
|
482
|
- continue
|
|
|
483
|
x,y=plot
|
481
|
x,y=plot
|
484
|
- # y = [k/(4*mu) for k in y]
|
|
|
485
|
- # x = [k/(mu)*tgen for k in x]
|
|
|
486
|
x2_plot, y2_plot = plot_straight_x_y(x,y)
|
482
|
x2_plot, y2_plot = plot_straight_x_y(x,y)
|
487
|
- p2, = ax2.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(breaks)+' brks')
|
|
|
488
|
- lines_fig2.append(p2)
|
|
|
|
|
483
|
+ if subset is not None:
|
|
|
484
|
+ if breaks in subset:
|
|
|
485
|
+ masking_alpha = 0.75
|
|
|
486
|
+ else:
|
|
|
487
|
+ masking_alpha = 0
|
|
|
488
|
+ p2, = ax2.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=masking_alpha, lw=2, label = str(breaks)+' brks')
|
489
|
# Plotting (fig 3) which is the same but log scale for x
|
489
|
# Plotting (fig 3) which is the same but log scale for x
|
490
|
- p3, = ax3.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(breaks)+' brks')
|
|
|
491
|
- lines_fig3.append(p3)
|
|
|
492
|
-
|
|
|
|
|
490
|
+ p3, = ax3.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=masking_alpha, lw=2, label = str(breaks)+' brks')
|
|
|
491
|
+ if subset is not None and breaks in subset:
|
|
|
492
|
+ # store for legend
|
|
|
493
|
+ lines_fig2.append(p2)
|
|
|
494
|
+ lines_fig3.append(p3)
|
493
|
ax3.axvline(x=500/tgen*mu, linestyle="--")
|
495
|
ax3.axvline(x=500/tgen*mu, linestyle="--")
|
494
|
if theta_scale:
|
496
|
if theta_scale:
|
495
|
xlabel = "Theta scaled by N0"
|
497
|
xlabel = "Theta scaled by N0"
|
496
|
ylabel = "Theta scaled by N0"
|
498
|
ylabel = "Theta scaled by N0"
|
497
|
else:
|
499
|
else:
|
498
|
- xlabel = "Theta scale"
|
|
|
499
|
- ylabel = "Theta"
|
|
|
|
|
500
|
+ xlabel = "t"
|
|
|
501
|
+ ylabel = r"$\theta$"
|
500
|
if ax is None:
|
502
|
if ax is None:
|
501
|
# if not ax, then use the plt syntax, not ax...
|
503
|
# if not ax, then use the plt syntax, not ax...
|
502
|
plt.xlabel(xlabel, fontsize=fnt_size)
|
504
|
plt.xlabel(xlabel, fontsize=fnt_size)
|
|
|
|
|
509
|
plt.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
511
|
plt.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
510
|
plt.text(-0.13, -0.135, 'Coal. time\nGen. time\nYears', ha='left', va='bottom', transform=ax3.transAxes)
|
512
|
plt.text(-0.13, -0.135, 'Coal. time\nGen. time\nYears', ha='left', va='bottom', transform=ax3.transAxes)
|
511
|
plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
|
513
|
plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
|
512
|
- # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
|
|
513
|
- plt.savefig(title+'_plot2_'+str(len(plot_lines))+'.pdf')
|
|
|
|
|
514
|
+ plt.savefig(title+'_plotB_'+str(nb_epochs)+'_epochs.pdf')
|
514
|
# close fig2 to save memory
|
515
|
# close fig2 to save memory
|
515
|
plt.close(fig2)
|
516
|
plt.close(fig2)
|
516
|
else:
|
517
|
else:
|
|
|
|
|
533
|
plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
|
534
|
plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
|
534
|
if ax is None:
|
535
|
if ax is None:
|
535
|
# nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
536
|
# nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
536
|
- plt.savefig(title+'_plot3_'+str(len(plot_lines))+'_log.pdf')
|
|
|
|
|
537
|
+ plt.savefig(title+'_plotC_'+str(nb_epochs)+'_epochs_log.pdf')
|
537
|
# close fig3 to save memory
|
538
|
# close fig3 to save memory
|
538
|
plt.close(fig3)
|
539
|
plt.close(fig3)
|
539
|
return ax
|
540
|
return ax
|
540
|
|
541
|
|
541
|
-def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10, rescale = False, subset = None):
|
|
|
|
|
542
|
+def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10, rescale = False, subset = None, max_breaks = None):
|
|
|
543
|
+ if max_breaks:
|
|
|
544
|
+ nb_breaks = max_breaks
|
|
|
545
|
+ else:
|
|
|
546
|
+ nb_breaks = len(plot_lines)+1
|
542
|
# multiple fig
|
547
|
# multiple fig
|
543
|
if ax is None:
|
548
|
if ax is None:
|
544
|
# intialize figure 1
|
549
|
# intialize figure 1
|
545
|
- my_dpi = 300
|
|
|
|
|
550
|
+ my_dpi = 500
|
546
|
fnt_size = 18
|
551
|
fnt_size = 18
|
547
|
# plt.rcParams['font.size'] = fnt_size
|
552
|
# plt.rcParams['font.size'] = fnt_size
|
548
|
fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
553
|
fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
|
554
|
+ plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
|
549
|
else:
|
555
|
else:
|
550
|
fnt_size = 12
|
556
|
fnt_size = 12
|
551
|
# plt.rcParams['font.size'] = fnt_size
|
557
|
# plt.rcParams['font.size'] = fnt_size
|
552
|
ax1 = ax[0, 0]
|
558
|
ax1 = ax[0, 0]
|
553
|
plt.subplots_adjust(wspace=0.3, hspace=0.3)
|
559
|
plt.subplots_adjust(wspace=0.3, hspace=0.3)
|
554
|
plots = []
|
560
|
plots = []
|
555
|
- for epoch, plot in enumerate(plot_lines):
|
|
|
|
|
561
|
+ for breaks, plot in enumerate(plot_lines):
|
|
|
562
|
+ if max_breaks and breaks > max_breaks:
|
|
|
563
|
+ # stop plotting if it exceeds the limit
|
|
|
564
|
+ continue
|
556
|
x,y = plot
|
565
|
x,y = plot
|
557
|
x_plot, y_plot = plot_straight_x_y(x,y)
|
566
|
x_plot, y_plot = plot_straight_x_y(x,y)
|
558
|
- p, = ax1.plot(x_plot, y_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
|
|
|
567
|
+ p, = ax1.plot(x_plot, y_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(breaks)+' brks')
|
559
|
|
568
|
|
560
|
# add plot to the list of all plots to superimpose
|
569
|
# add plot to the list of all plots to superimpose
|
561
|
plots.append(p)
|
570
|
plots.append(p)
|
|
|
|
|
565
|
#ax.legend(handles=[p0]+plots)
|
574
|
#ax.legend(handles=[p0]+plots)
|
566
|
ax1.set_xlabel("# bin & cumul. prop. of sites", fontsize=fnt_size)
|
575
|
ax1.set_xlabel("# bin & cumul. prop. of sites", fontsize=fnt_size)
|
567
|
# Set the x-axis locator to reduce the number of ticks to 10
|
576
|
# Set the x-axis locator to reduce the number of ticks to 10
|
568
|
- ax1.set_ylabel("theta", fontsize=fnt_size)
|
|
|
|
|
577
|
+ ax1.set_ylabel(r'$\theta_k$', fontsize=fnt_size, rotation = 90)
|
569
|
ax1.set_title(title, fontsize=fnt_size)
|
578
|
ax1.set_title(title, fontsize=fnt_size)
|
570
|
ax1.legend(handles=plots, loc='best', fontsize = fnt_size*0.5)
|
579
|
ax1.legend(handles=plots, loc='best', fontsize = fnt_size*0.5)
|
571
|
ax1.set_xticks(x_ticks)
|
580
|
ax1.set_xticks(x_ticks)
|
|
|
|
|
579
|
ax1.set_xticklabels([f'{values[k]}\n{val:.2f}' for k, val in enumerate(new_prop)], fontsize = fnt_size*0.8)
|
588
|
ax1.set_xticklabels([f'{values[k]}\n{val:.2f}' for k, val in enumerate(new_prop)], fontsize = fnt_size*0.8)
|
580
|
if ax is None:
|
589
|
if ax is None:
|
581
|
# nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
590
|
# nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
582
|
- plt.savefig(title+'_raw'+str(len(plot_lines))+'.pdf')
|
|
|
|
|
591
|
+ plt.savefig(title+'_raw_'+str(nb_breaks)+'_breaks.pdf')
|
583
|
plt.close(fig)
|
592
|
plt.close(fig)
|
584
|
# return plots
|
593
|
# return plots
|
585
|
return ax
|
594
|
return ax
|
|
|
|
|
588
|
my_dpi = 300
|
597
|
my_dpi = 300
|
589
|
saved_plots_dict = save_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, output = title+"_plotdata.json")
|
598
|
saved_plots_dict = save_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, output = title+"_plotdata.json")
|
590
|
nb_of_epochs = len(saved_plots_dict["all_epochs"]["plots"])
|
599
|
nb_of_epochs = len(saved_plots_dict["all_epochs"]["plots"])
|
591
|
- print(nb_of_epochs)
|
|
|
592
|
best_epoch = saved_plots_dict["best_epoch_by_AIC"]
|
600
|
best_epoch = saved_plots_dict["best_epoch_by_AIC"]
|
|
|
601
|
+ print("Best epoch based on AIC =", best_epoch)
|
593
|
save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = nb_of_epochs, input = title+"_plotdata.json", output = title+"_plotdata.json")
|
602
|
save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = nb_of_epochs, input = title+"_plotdata.json", output = title+"_plotdata.json")
|
594
|
|
603
|
|
595
|
with open(title+"_plotdata.json", 'r') as json_file:
|
604
|
with open(title+"_plotdata.json", 'r') as json_file:
|
|
|
|
|
628
|
swp2_x, swp2_y = swp2_vals[0], swp2_vals[1]
|
637
|
swp2_x, swp2_y = swp2_vals[0], swp2_vals[1]
|
629
|
# End of Parsing real swp2 output
|
638
|
# End of Parsing real swp2 output
|
630
|
plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
|
639
|
plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
|
631
|
- prop = loaded_data['prop'], title = title, ax = None)
|
|
|
|
|
640
|
+ prop = loaded_data['prop'], title = title, ax = None, max_breaks = breaks)
|
632
|
plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], mu = mu, tgen = tgen, subset=[loaded_data['best_epoch_by_AIC']]+selected_breaks,
|
641
|
plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], mu = mu, tgen = tgen, subset=[loaded_data['best_epoch_by_AIC']]+selected_breaks,
|
633
|
# plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], subset=list(range(0,3))+[loaded_data['best_epoch_by_AIC']]+selected_breaks,
|
642
|
# plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], subset=list(range(0,3))+[loaded_data['best_epoch_by_AIC']]+selected_breaks,
|
634
|
prop = loaded_data['prop'], title = title, swp2_lines = [swp2_x, swp2_y], ax = None)
|
643
|
prop = loaded_data['prop'], title = title, swp2_lines = [swp2_x, swp2_y], ax = None)
|