|
@@ -0,0 +1,122 @@
|
|
1
|
+
|
|
2
|
+import matplotlib.pyplot as plt
|
|
3
|
+import os
|
|
4
|
+
|
|
5
|
+def return_x_y_from_stwp_theta_file(stwp_theta_file, breaks, mu, tgen):
|
|
6
|
+ with open(stwp_theta_file, "r") as swp_file:
|
|
7
|
+ # Read the first line
|
|
8
|
+ line = swp_file.readline()
|
|
9
|
+ L = float(line.split()[2])
|
|
10
|
+ # Process lines until the end of the file
|
|
11
|
+ while line:
|
|
12
|
+ # check at each line
|
|
13
|
+ if line.startswith("dim") :
|
|
14
|
+ dim = int(line.split()[1])
|
|
15
|
+ if dim == breaks+1:
|
|
16
|
+ likelihood = line.split()[5]
|
|
17
|
+ groups = line.split()[6:6+dim]
|
|
18
|
+ theta_site = line.split()[6+dim:6+dim+1+dim]
|
|
19
|
+ elif dim < breaks+1:
|
|
20
|
+ line = swp_file.readline()
|
|
21
|
+ continue
|
|
22
|
+ elif dim > breaks+1:
|
|
23
|
+ break
|
|
24
|
+ #return 0,0,0
|
|
25
|
+ # Read the next line
|
|
26
|
+ line = swp_file.readline()
|
|
27
|
+ #### END of parsing
|
|
28
|
+ # quit this file if the number of dimensions is incorrect
|
|
29
|
+ if dim < breaks+1:
|
|
30
|
+ return 0,0,0
|
|
31
|
+ # get n, the last bin of the last group
|
|
32
|
+ n = int(groups[-1].split(",")[-1])
|
|
33
|
+ # initiate the dict of times
|
|
34
|
+ t = {}
|
|
35
|
+ # list of thetas
|
|
36
|
+ theta_L = []
|
|
37
|
+ sum_t = 0
|
|
38
|
+ for group_nb, group in enumerate(groups):
|
|
39
|
+ # store all the thetas one by one, with one theta per group
|
|
40
|
+ theta_L.append(float(theta_site[group_nb]))
|
|
41
|
+ # if the group is of size 1
|
|
42
|
+ if len(group.split(',')) == 1:
|
|
43
|
+ i = int(group)
|
|
44
|
+ # if the group size is >1, take the first elem of the group
|
|
45
|
+ # i is the first bin of each group, straight after a breakpoint
|
|
46
|
+ else:
|
|
47
|
+ i = int(group.split(",")[0])
|
|
48
|
+ j = int(group.split(",")[-1])
|
|
49
|
+ t[i] = 0
|
|
50
|
+ if len(group.split(',')) == 1:
|
|
51
|
+ k = i
|
|
52
|
+ t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
|
|
53
|
+ else:
|
|
54
|
+ for k in range(i, j+1):
|
|
55
|
+ t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
|
|
56
|
+ # we add the cumulative times at the end
|
|
57
|
+ t[i] += sum_t
|
|
58
|
+ sum_t = t[i]
|
|
59
|
+ # build the y axis (sizes)
|
|
60
|
+ y = []
|
|
61
|
+ for theta in theta_L:
|
|
62
|
+ # with size N = theta/4mu
|
|
63
|
+ size = theta / (4*mu)
|
|
64
|
+ y.append(size)
|
|
65
|
+ y.append(size)
|
|
66
|
+ # build the time x axis
|
|
67
|
+ x = [0]
|
|
68
|
+ for time in range(0, len(t.values())-1):
|
|
69
|
+ x.append(list(t.values())[time])
|
|
70
|
+ x.append(list(t.values())[time])
|
|
71
|
+ x.append(list(t.values())[len(t.values())-1])
|
|
72
|
+
|
|
73
|
+ return x,y,likelihood
|
|
74
|
+
|
|
75
|
+def plot_3epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title"):
|
|
76
|
+
|
|
77
|
+ scenari = {}
|
|
78
|
+ cpt = 0
|
|
79
|
+
|
|
80
|
+ for file_name in os.listdir(folder_path):
|
|
81
|
+ if os.path.isfile(os.path.join(folder_path, file_name)):
|
|
82
|
+ # Perform actions on each file
|
|
83
|
+ x,y,likelihood = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
84
|
+ tgen = tgen,
|
|
85
|
+ mu = mu)
|
|
86
|
+ if x == 0 or y == 0:
|
|
87
|
+ continue
|
|
88
|
+ cpt +=1
|
|
89
|
+ scenari[likelihood] = x,y
|
|
90
|
+ print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
|
|
91
|
+ print(cpt, "theta files have been scanned.")
|
|
92
|
+ # sort starting by the smallest -log(Likelihood)
|
|
93
|
+ best10_scenari = (sorted(list(scenari.keys())))[:10]
|
|
94
|
+ print("10 greatest Likelihoods", best10_scenari)
|
|
95
|
+ greatest_likelihood = best10_scenari[0]
|
|
96
|
+ x, y = scenari[greatest_likelihood]
|
|
97
|
+ my_dpi = 300
|
|
98
|
+ plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
99
|
+ plt.plot(x, y, 'r-', lw=2, label = 'Lik='+greatest_likelihood)
|
|
100
|
+ for scenario in best10_scenari[1:]:
|
|
101
|
+ x,y = scenari[scenario]
|
|
102
|
+ print("\n---- Lik:",scenario,"\n\nt=", x,"\n\nN=",y, "\n\n")
|
|
103
|
+ plt.plot(x, y, '--', lw=1, label = 'Lik='+scenario)
|
|
104
|
+ plt.ylabel("Individuals (N)")
|
|
105
|
+ plt.xlabel("Time (years)")
|
|
106
|
+ plt.legend(loc='upper right')
|
|
107
|
+ plt.title(title)
|
|
108
|
+ #plt.gcf().set_size(1000, 500)
|
|
109
|
+ plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
|
110
|
+ #plt.show()
|
|
111
|
+
|
|
112
|
+if __name__ == "__main__":
|
|
113
|
+
|
|
114
|
+ if len(sys.argv) != 4:
|
|
115
|
+ print("Need 3 args: ThetaFolder MutationRate GenerationTime")
|
|
116
|
+ exit(0)
|
|
117
|
+
|
|
118
|
+ folder_path = sys.argv[1]
|
|
119
|
+ mu = sys.argv[2]
|
|
120
|
+ tgen = sys.argv[3]
|
|
121
|
+
|
|
122
|
+ plot_3epochs_thetafolder(folder_path, mu, tgen)
|