|
|
|
|
216
|
plt.title(title)
|
216
|
plt.title(title)
|
217
|
plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
217
|
plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
218
|
|
218
|
|
|
|
219
|
+def plot_straight_x_y(x,y):
|
|
|
220
|
+ x_1 = [x[0]]
|
|
|
221
|
+ y_1 = []
|
|
|
222
|
+ for i in range(0, len(y)-1):
|
|
|
223
|
+ x_1.append(x[i])
|
|
|
224
|
+ x_1.append(x[i])
|
|
|
225
|
+ y_1.append(y[i])
|
|
|
226
|
+ y_1.append(y[i])
|
|
|
227
|
+ y_1 = y_1+[y[-1],y[-1]]
|
|
|
228
|
+ x_1.append(x[-1])
|
|
|
229
|
+ return x_1, y_1
|
|
|
230
|
+
|
219
|
def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_scale = True, ax = None):
|
231
|
def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_scale = True, ax = None):
|
220
|
#scenari = {}
|
232
|
#scenari = {}
|
221
|
cpt = 0
|
233
|
cpt = 0
|
|
|
|
|
237
|
x,y,likelihood,sfs,L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
249
|
x,y,likelihood,sfs,L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
238
|
tgen = tgen,
|
250
|
tgen = tgen,
|
239
|
mu = mu, relative_theta_scale = theta_scale)
|
251
|
mu = mu, relative_theta_scale = theta_scale)
|
|
|
252
|
+ if x == 0:
|
|
|
253
|
+ # last break did not work, then breaks = breaks-1
|
|
|
254
|
+ breaks -= 1
|
240
|
print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
|
255
|
print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
|
241
|
print(cpt, "theta file(s) have been scanned.")
|
256
|
print(cpt, "theta file(s) have been scanned.")
|
242
|
my_dpi = 300
|
257
|
my_dpi = 300
|
|
|
|
|
249
|
fnt_size = 12
|
264
|
fnt_size = 12
|
250
|
plt.rcParams['font.size'] = fnt_size
|
265
|
plt.rcParams['font.size'] = fnt_size
|
251
|
ax1 = ax[0,0]
|
266
|
ax1 = ax[0,0]
|
252
|
- ax1.set_xlim(1e-3, 1)
|
|
|
253
|
- #plt.ylim(0, 10)
|
|
|
|
|
267
|
+ #ax1.set_xlim(1e-3, 1)
|
254
|
ax1.set_yscale('log')
|
268
|
ax1.set_yscale('log')
|
255
|
ax1.set_xscale('log')
|
269
|
ax1.set_xscale('log')
|
256
|
ax1.grid(True,which="both", linestyle='--', alpha = 0.3)
|
270
|
ax1.grid(True,which="both", linestyle='--', alpha = 0.3)
|
257
|
brkpt_lik = []
|
271
|
brkpt_lik = []
|
|
|
272
|
+ top_plots = {}
|
258
|
for epoch, scenari in epochs.items():
|
273
|
for epoch, scenari in epochs.items():
|
259
|
# sort starting by the smallest -log(Likelihood)
|
274
|
# sort starting by the smallest -log(Likelihood)
|
260
|
best10_scenari = (sorted(list(scenari.keys())))[:10]
|
275
|
best10_scenari = (sorted(list(scenari.keys())))[:10]
|
|
|
|
|
271
|
# divide by N0
|
286
|
# divide by N0
|
272
|
y[i] = y[i]/N0
|
287
|
y[i] = y[i]/N0
|
273
|
x[i] = x[i]/N0
|
288
|
x[i] = x[i]/N0
|
274
|
- ax1.plot(x, y, 'o', linestyle = "-", alpha=0.75, lw=2, label = str(epoch)+' BrkPt | Lik='+greatest_likelihood)
|
|
|
275
|
- if theta_scale:
|
|
|
276
|
- ax1.set_xlabel("Coal. time")
|
|
|
277
|
- ax1.set_ylabel("Pop. size scaled by N0")
|
|
|
278
|
- recent_scale_lower_bound = 0.01
|
|
|
279
|
- recent_scale_upper_bound = 0.1
|
|
|
280
|
- #print(recent_scale_lower_bound, recent_scale_upper_bound)
|
|
|
281
|
- ax1.axvline(x=recent_scale_lower_bound)
|
|
|
282
|
- ax1.axvline(x=recent_scale_upper_bound)
|
|
|
283
|
- else:
|
|
|
284
|
- # years
|
|
|
285
|
- plt.set_xlabel("Time (years)")
|
|
|
286
|
- plt.set_ylabel("Individuals (N)")
|
|
|
|
|
289
|
+ top_plots[greatest_likelihood] = x,y,epoch
|
|
|
290
|
+ plots_likelihoods = list(top_plots.keys())
|
|
|
291
|
+ for i in range(len(plots_likelihoods)):
|
|
|
292
|
+ plots_likelihoods[i] = float(plots_likelihoods[i])
|
|
|
293
|
+ best10_plots = sorted(plots_likelihoods)[:10]
|
|
|
294
|
+ top_plot_lik = str(best10_plots[0])
|
|
|
295
|
+ plot_handles = []
|
|
|
296
|
+ p0, = ax1.plot(top_plots[top_plot_lik][0], top_plots[top_plot_lik][1], 'o', linestyle = "-",
|
|
|
297
|
+ alpha=1, lw=2, label = str(top_plots[top_plot_lik][2])+' epoch | Lik='+top_plot_lik)
|
|
|
298
|
+ plot_handles.append(p0)
|
|
|
299
|
+ for k, plot_Lk in enumerate(best10_plots[1:]):
|
|
|
300
|
+ plot_Lk = str(plot_Lk)
|
|
|
301
|
+ p, = ax1.plot(top_plots[plot_Lk][0], top_plots[plot_Lk][1], 'o', linestyle = "--",
|
|
|
302
|
+ alpha=1/(k+1), lw=1.5, label = str(top_plots[plot_Lk][2])+' epoch | Lik='+plot_Lk)
|
|
|
303
|
+ plot_handles.append(p)
|
|
|
304
|
+ if theta_scale:
|
|
|
305
|
+ ax1.set_xlabel("Coal. time")
|
|
|
306
|
+ ax1.set_ylabel("Pop. size scaled by N0")
|
|
|
307
|
+ # recent_scale_lower_bound = 0.01
|
|
|
308
|
+ # recent_scale_upper_bound = 0.1
|
|
|
309
|
+ # ax1.axvline(x=recent_scale_lower_bound)
|
|
|
310
|
+ # ax1.axvline(x=recent_scale_upper_bound)
|
|
|
311
|
+ else:
|
|
|
312
|
+ # years
|
|
|
313
|
+ plt.set_xlabel("Time (years)")
|
|
|
314
|
+ plt.set_ylabel("Individuals (N)")
|
287
|
ax1.set_xlim(1e-5, 1)
|
315
|
ax1.set_xlim(1e-5, 1)
|
288
|
- ax1.legend(loc='best', fontsize = fnt_size*0.5)
|
|
|
289
|
- ax1.set_title(title)
|
|
|
290
|
- if ax is None:
|
|
|
291
|
- plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
|
|
|
|
316
|
+ ax1.legend(handles = plot_handles, loc='best', fontsize = fnt_size*0.5)
|
|
|
317
|
+ ax1.set_title(title)
|
|
|
318
|
+ if ax is None:
|
|
|
319
|
+ plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
292
|
# plot likelihood against nb of breakpoints
|
320
|
# plot likelihood against nb of breakpoints
|
293
|
# best possible likelihood from SFS
|
321
|
# best possible likelihood from SFS
|
294
|
# Segregating sites
|
322
|
# Segregating sites
|
295
|
S = sum(SFS_stored)
|
323
|
S = sum(SFS_stored)
|
296
|
- # number of monomorphic sites
|
|
|
|
|
324
|
+ # Number of kept sites from which the SFS is computed
|
297
|
L = L_stored
|
325
|
L = L_stored
|
|
|
326
|
+ # number of monomorphic sites
|
298
|
S0 = L-S
|
327
|
S0 = L-S
|
299
|
# print("SFS", SFS_stored)
|
328
|
# print("SFS", SFS_stored)
|
300
|
# print("S", S, "L", L, "S0=", S0)
|
329
|
# print("S", S, "L", L, "S0=", S0)
|
|
|
|
|
303
|
for xi in range(0, len(SFS_stored)):
|
332
|
for xi in range(0, len(SFS_stored)):
|
304
|
p_i = SFS_stored[xi] / float(S+S0)
|
333
|
p_i = SFS_stored[xi] / float(S+S0)
|
305
|
Ln += np.log(p_i) * SFS_stored[xi] - log_facto(SFS_stored[xi])
|
334
|
Ln += np.log(p_i) * SFS_stored[xi] - log_facto(SFS_stored[xi])
|
306
|
- res = Ln
|
|
|
307
|
- # print(res)
|
|
|
308
|
# basic plot likelihood
|
335
|
# basic plot likelihood
|
309
|
if ax is None:
|
336
|
if ax is None:
|
310
|
fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
337
|
fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
|
|
|
313
|
plt.rcParams['font.size'] = fnt_size
|
340
|
plt.rcParams['font.size'] = fnt_size
|
314
|
ax2 = ax[2,0]
|
341
|
ax2 = ax[2,0]
|
315
|
ax2.plot(np.array(brkpt_lik)[:, 0], np.array(brkpt_lik)[:, 1].astype(float), 'o', linestyle = "dotted", lw=2)
|
342
|
ax2.plot(np.array(brkpt_lik)[:, 0], np.array(brkpt_lik)[:, 1].astype(float), 'o', linestyle = "dotted", lw=2)
|
316
|
- # plt.ylim(0,100)
|
|
|
317
|
- ax2.axhline(y=-Ln)
|
|
|
|
|
343
|
+ ax2.axhline(y=-Ln, linestyle = "-.", color = "red", label = "$-\log\mathcal{L}$ = "+str(round(-Ln, 2)))
|
318
|
ax2.set_yscale('log')
|
344
|
ax2.set_yscale('log')
|
319
|
ax2.set_xlabel("# breakpoints", fontsize=fnt_size)
|
345
|
ax2.set_xlabel("# breakpoints", fontsize=fnt_size)
|
320
|
ax2.set_ylabel("$-\log\mathcal{L}$")
|
346
|
ax2.set_ylabel("$-\log\mathcal{L}$")
|
321
|
- #ax2.legend(loc='best', fontsize = fnt_size*0.5)
|
|
|
322
|
- ax2.set_title(title)
|
|
|
|
|
347
|
+ ax2.legend(loc='best', fontsize = fnt_size*0.8)
|
|
|
348
|
+ ax2.set_title(title+" Likelihood gain from # breakpoints")
|
323
|
if ax is None:
|
349
|
if ax is None:
|
324
|
plt.savefig(title+'_Breakpts_Likelihood.pdf')
|
350
|
plt.savefig(title+'_Breakpts_Likelihood.pdf')
|
325
|
# AIC
|
351
|
# AIC
|
|
|
|
|
330
|
ax3 = ax[2,1]
|
356
|
ax3 = ax[2,1]
|
331
|
AIC = 2*(len(brkpt_lik)+1)+2*np.array(brkpt_lik)[:, 1].astype(float)
|
357
|
AIC = 2*(len(brkpt_lik)+1)+2*np.array(brkpt_lik)[:, 1].astype(float)
|
332
|
ax3.plot(np.array(brkpt_lik)[:, 0], AIC, 'o', linestyle = "dotted", lw=2)
|
358
|
ax3.plot(np.array(brkpt_lik)[:, 0], AIC, 'o', linestyle = "dotted", lw=2)
|
333
|
- ax3.axhline(y=2*(len(brkpt_lik)+1)-2*Ln)
|
|
|
|
|
359
|
+ AIC_ln = 2*(len(brkpt_lik)+1)-2*Ln
|
|
|
360
|
+ ax3.axhline(y=AIC_ln, linestyle = "-.", color = "red",
|
|
|
361
|
+ label = "Min. AIC = "+str(round(AIC_ln, 2)))
|
334
|
ax3.set_yscale('log')
|
362
|
ax3.set_yscale('log')
|
335
|
ax3.set_xlabel("# breakpoints", fontsize=fnt_size)
|
363
|
ax3.set_xlabel("# breakpoints", fontsize=fnt_size)
|
336
|
ax3.set_ylabel("AIC")
|
364
|
ax3.set_ylabel("AIC")
|
337
|
- #ax3.legend(loc='best', fontsize = fnt_size*0.5)
|
|
|
338
|
- ax3.set_title(title)
|
|
|
|
|
365
|
+ ax3.legend(loc='best', fontsize = fnt_size*0.8)
|
|
|
366
|
+ ax3.set_title(title+" AIC")
|
339
|
if ax is None:
|
367
|
if ax is None:
|
340
|
plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf')
|
368
|
plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf')
|
341
|
return ax
|
369
|
return ax
|
|
|
|
|
396
|
for i in range(len(y)):
|
424
|
for i in range(len(y)):
|
397
|
y[i] = y[i]/N0
|
425
|
y[i] = y[i]/N0
|
398
|
# plot
|
426
|
# plot
|
|
|
427
|
+ x_plot, y_plot = plot_straight_x_y(x, y)
|
399
|
#plt.plot(x, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
428
|
#plt.plot(x, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
400
|
- p, = ax1.plot(x, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
|
|
|
429
|
+ p, = ax1.plot(x_plot, y_plot, 'o', linestyle="-.", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
401
|
# add plot to the list of all plots to superimpose
|
430
|
# add plot to the list of all plots to superimpose
|
402
|
plots.append(p)
|
431
|
plots.append(p)
|
403
|
# virtual line to get the second x axis for proportions
|
432
|
# virtual line to get the second x axis for proportions
|
|
|
|
|
413
|
# in a combined plot, more space between the fig and the axis
|
442
|
# in a combined plot, more space between the fig and the axis
|
414
|
twin.spines["bottom"].set_position(("axes", -0.35))
|
443
|
twin.spines["bottom"].set_position(("axes", -0.35))
|
415
|
#ax.legend(handles=[p0]+plots)
|
444
|
#ax.legend(handles=[p0]+plots)
|
416
|
- ax1.set_xlabel("# breaks")
|
|
|
|
|
445
|
+ ax1.set_xlabel("# bin")
|
417
|
# Set the x-axis locator to reduce the number of ticks to 10
|
446
|
# Set the x-axis locator to reduce the number of ticks to 10
|
418
|
ax1.xaxis.set_major_locator(MaxNLocator(nbins=10))
|
447
|
ax1.xaxis.set_major_locator(MaxNLocator(nbins=10))
|
|
|
448
|
+ twin.xaxis.set_major_locator(MaxNLocator(nbins=10))
|
419
|
ax1.set_ylabel("theta")
|
449
|
ax1.set_ylabel("theta")
|
420
|
twin.set_ylabel("Proportion")
|
450
|
twin.set_ylabel("Proportion")
|
|
|
451
|
+ ax1.set_title("Title")
|
421
|
ax1.legend(handles=plots, loc='best', fontsize = fnt_size*0.5)
|
452
|
ax1.legend(handles=plots, loc='best', fontsize = fnt_size*0.5)
|
422
|
if ax is None:
|
453
|
if ax is None:
|
423
|
plt.savefig(title+'_raw'+str(k)+'.pdf')
|
454
|
plt.savefig(title+'_raw'+str(k)+'.pdf')
|
|
|
|
|
453
|
T += y[i] / (x[i]*(x[i]-1))
|
484
|
T += y[i] / (x[i]*(x[i]-1))
|
454
|
x_2.append(T)
|
485
|
x_2.append(T)
|
455
|
# Plotting (fig 2)
|
486
|
# Plotting (fig 2)
|
456
|
- p2, = ax2.plot(x_2, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
|
|
|
487
|
+ x_2 = [0]+x_2
|
|
|
488
|
+ y = [y[0]]+y
|
|
|
489
|
+ x2_plot, y2_plot = plot_straight_x_y(x_2, y)
|
|
|
490
|
+ p2, = ax2.plot(x2_plot, y2_plot, 'o', linestyle="-.", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
457
|
lines_fig2.append(p2)
|
491
|
lines_fig2.append(p2)
|
458
|
# Plotting (fig 3) which is the same but log scale for x
|
492
|
# Plotting (fig 3) which is the same but log scale for x
|
459
|
- p3, = ax3.plot(x_2, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
|
|
|
493
|
+ p3, = ax3.plot(x2_plot, y2_plot, 'o', linestyle="-.", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
460
|
lines_fig3.append(p3)
|
494
|
lines_fig3.append(p3)
|
461
|
- ax2.set_xlabel("# breaks")
|
|
|
|
|
495
|
+ ax2.set_xlabel("Relative scale")
|
462
|
ax2.set_ylabel("theta")
|
496
|
ax2.set_ylabel("theta")
|
463
|
- ax2.set_title("Test")
|
|
|
|
|
497
|
+ ax2.set_title("Title")
|
464
|
ax2.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
498
|
ax2.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
465
|
if ax is None:
|
499
|
if ax is None:
|
466
|
plt.savefig(title+'_plot2_'+str(k)+'.pdf')
|
500
|
plt.savefig(title+'_plot2_'+str(k)+'.pdf')
|
467
|
ax3.set_xscale('log')
|
501
|
ax3.set_xscale('log')
|
468
|
- ax3.set_xlabel("log()")
|
|
|
|
|
502
|
+ ax3.set_xlabel("log Relative scale")
|
469
|
ax3.set_ylabel("theta")
|
503
|
ax3.set_ylabel("theta")
|
470
|
- ax3.set_title("Test")
|
|
|
|
|
504
|
+ ax3.set_title("Title")
|
471
|
ax3.legend(handles=lines_fig3, loc='best', fontsize = fnt_size*0.5)
|
505
|
ax3.legend(handles=lines_fig3, loc='best', fontsize = fnt_size*0.5)
|
472
|
if ax is None:
|
506
|
if ax is None:
|
473
|
plt.savefig(title+'_plot3_'+str(k)+'_log.pdf')
|
507
|
plt.savefig(title+'_plot3_'+str(k)+'_log.pdf')
|
|
|
|
|
477
|
def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale = True):
|
511
|
def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale = True):
|
478
|
my_dpi = 300
|
512
|
my_dpi = 300
|
479
|
# Add some extra space for the second axis at the bottom
|
513
|
# Add some extra space for the second axis at the bottom
|
480
|
- fig, axs = plt.subplots(3, 2, figsize=(4500/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
|
|
|
|
514
|
+ fig, axs = plt.subplots(3, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
481
|
ax = plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = axs)
|
515
|
ax = plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = axs)
|
482
|
ax = plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = axs)
|
516
|
ax = plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = axs)
|
483
|
-
|
|
|
484
|
# Adjust layout to prevent clipping of titles
|
517
|
# Adjust layout to prevent clipping of titles
|
485
|
plt.tight_layout()
|
518
|
plt.tight_layout()
|
486
|
# Adjust absolute space between the top and bottom rows
|
519
|
# Adjust absolute space between the top and bottom rows
|
487
|
plt.subplots_adjust(hspace=0.7) # Adjust this value based on your requirement
|
520
|
plt.subplots_adjust(hspace=0.7) # Adjust this value based on your requirement
|
488
|
-
|
|
|
489
|
# Save the entire grid as a single figure
|
521
|
# Save the entire grid as a single figure
|
490
|
plt.savefig(title+'_combined.pdf')
|
522
|
plt.savefig(title+'_combined.pdf')
|
491
|
-
|
|
|
|
|
523
|
+ plt.close()
|
|
|
524
|
+ # second call for individual plots
|
|
|
525
|
+ plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = None)
|
|
|
526
|
+ plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = None)
|
492
|
|
527
|
|
493
|
if __name__ == "__main__":
|
528
|
if __name__ == "__main__":
|
494
|
|
529
|
|