|
@@ -4,6 +4,7 @@ import numpy as np
|
4
|
4
|
import math
|
5
|
5
|
from scipy.special import gammaln
|
6
|
6
|
from matplotlib.backends.backend_pdf import PdfPages
|
|
7
|
+from matplotlib.ticker import MaxNLocator
|
7
|
8
|
|
8
|
9
|
def log_facto(k):
|
9
|
10
|
k = int(k)
|
|
@@ -320,7 +321,7 @@ def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
320
|
321
|
plt.title(title)
|
321
|
322
|
plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf')
|
322
|
323
|
|
323
|
|
-def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True, breaks_max = 5):
|
|
324
|
+def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True, breaks_max = 12):
|
324
|
325
|
"""
|
325
|
326
|
Use theta values as is to do basic plots.
|
326
|
327
|
"""
|
|
@@ -338,10 +339,17 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
338
|
339
|
epochs[k] = thetas
|
339
|
340
|
print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(k)+"\n*******\n")
|
340
|
341
|
print(cpt, "theta file(s) have been scanned.")
|
341
|
|
-
|
342
|
342
|
# intialize figure 1
|
343
|
343
|
my_dpi = 300
|
344
|
|
- plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
344
|
+ # plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
345
|
+ # multiple fig
|
|
346
|
+ fig, ax = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
347
|
+ # Add some extra space for the second axis at the bottom
|
|
348
|
+ fig.subplots_adjust(bottom=0.15)
|
|
349
|
+ twin = ax.twiny()
|
|
350
|
+ # Offset the right spine of twin2
|
|
351
|
+ # twin.spines.right.set_position(("axes", 1.2))
|
|
352
|
+ plots = []
|
345
|
353
|
for epoch, theta in epochs.items():
|
346
|
354
|
groups = np.array(list(theta.values()), dtype=object)[:, 1].tolist()
|
347
|
355
|
x = []
|
|
@@ -352,21 +360,38 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
352
|
360
|
y += list(np.repeat(thetas[i], len(group)))
|
353
|
361
|
if epoch == 0:
|
354
|
362
|
N0 = y[0]
|
|
363
|
+ # compute the proportion of information used at each bin of the SFS
|
|
364
|
+ sum_theta_i = 0
|
|
365
|
+ for i in range(2, len(y)+2):
|
|
366
|
+ sum_theta_i+=y[i-2] / (i-1)
|
|
367
|
+ prop = []
|
|
368
|
+ for k in range(2, len(y)+2):
|
|
369
|
+ prop.append(y[k-2] / (k - 1) / sum_theta_i)
|
|
370
|
+ prop = prop[::-1]
|
|
371
|
+ # print(prop, "\n", sum(prop))
|
|
372
|
+ # normalise to N0 (N0 of epoch1)
|
355
|
373
|
for i in range(len(y)):
|
356
|
374
|
y[i] = y[i]/N0
|
357
|
|
- # compute the proportion of information used at each bin of the SFS
|
358
|
|
- sum_theta_i = 0
|
359
|
|
- for i in range(2, len(y)-1):
|
360
|
|
- sum_theta_i+=y[i] / (i-1)
|
361
|
|
- prop = []
|
362
|
|
- for k in range(2, len(y)-1):
|
363
|
|
- prop.append(y[k] / (k - 1) / sum_theta_i)
|
364
|
|
- # plot
|
365
|
|
- plt.plot(x, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
366
|
|
- plt.xlabel("# breaks")
|
367
|
|
- plt.ylabel("theta")
|
368
|
|
- plt.legend(loc='upper right')
|
369
|
|
- plt.savefig(title+'_test'+str(k)+'.pdf')
|
|
375
|
+ # plot
|
|
376
|
+ #plt.plot(x, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
377
|
+ p, = ax.plot(x, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
378
|
+ # add plot to the list of all plots to superimpose
|
|
379
|
+ plots.append(p)
|
|
380
|
+ # virtual line to get the second x axis for proportions
|
|
381
|
+ p0, = twin.plot(prop, y, alpha = 0, label="Proportion")
|
|
382
|
+ # Move twinned axis ticks and label from top to bottom
|
|
383
|
+ twin.xaxis.set_ticks_position("bottom")
|
|
384
|
+ twin.xaxis.set_label_position("bottom")
|
|
385
|
+ # Offset the twin axis below the host
|
|
386
|
+ twin.spines["bottom"].set_position(("axes", -0.1))
|
|
387
|
+ #ax.legend(handles=[p0]+plots)
|
|
388
|
+ ax.set_xlabel("# breaks")
|
|
389
|
+ # Set the x-axis locator to reduce the number of ticks = 10
|
|
390
|
+ ax.xaxis.set_major_locator(MaxNLocator(nbins=10))
|
|
391
|
+ ax.set_ylabel("theta")
|
|
392
|
+ # twin.set_ylabel("Proportion")
|
|
393
|
+ plt.legend(handles=plots, loc='upper right')
|
|
394
|
+ plt.savefig(title+'_raw'+str(k)+'.pdf')
|
370
|
395
|
# fig 2 & 3
|
371
|
396
|
plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
372
|
397
|
for epoch, theta in epochs.items():
|
|
@@ -394,14 +419,14 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
394
|
419
|
plt.xlabel("# breaks")
|
395
|
420
|
plt.ylabel("theta")
|
396
|
421
|
plt.legend(loc='upper right')
|
397
|
|
- plt.savefig(title+'_test'+str(k)+'.pdf')
|
|
422
|
+ plt.savefig(title+'_plot2_'+str(k)+'.pdf')
|
398
|
423
|
# Plotting (fig 3) which is the same but log scale for x
|
399
|
424
|
plt.plot(x_2, y, 'o', linestyle="dotted", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
400
|
425
|
plt.xscale('log')
|
401
|
426
|
plt.xlabel("# breaks")
|
402
|
427
|
plt.ylabel("theta")
|
403
|
428
|
plt.legend(loc='upper right')
|
404
|
|
- plt.savefig(title+'_test'+str(k)+'_log.pdf')
|
|
429
|
+ plt.savefig(title+'_plot3_'+str(k)+'_log.pdf')
|
405
|
430
|
|
406
|
431
|
def save_multi_image(filename):
|
407
|
432
|
pp = PdfPages(filename)
|