|
@@ -126,10 +126,11 @@ def plot_straight_x_y(x,y):
|
126
|
126
|
|
127
|
127
|
def plot_all_epochs_thetafolder(full_dict, mu, tgen, title = "Title",
|
128
|
128
|
theta_scale = True, ax = None, input = None, output = None):
|
129
|
|
- my_dpi = 300
|
|
129
|
+ my_dpi = 500
|
|
130
|
+ L = full_dict["L"]
|
130
|
131
|
if ax is None:
|
131
|
132
|
# intialize figure
|
132
|
|
- my_dpi = 300
|
|
133
|
+ #my_dpi = 300
|
133
|
134
|
fnt_size = 18
|
134
|
135
|
# plt.rcParams['font.size'] = fnt_size
|
135
|
136
|
fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
@@ -139,16 +140,16 @@ def plot_all_epochs_thetafolder(full_dict, mu, tgen, title = "Title",
|
139
|
140
|
ax1 = ax[1][0,0]
|
140
|
141
|
ax1.set_yscale('log')
|
141
|
142
|
ax1.set_xscale('log')
|
142
|
|
- ax1.grid(True,which="both", linestyle='--', alpha = 0.3)
|
143
|
143
|
plot_handles = []
|
144
|
144
|
best_plot = full_dict['all_epochs']['best']
|
145
|
|
- p0, = ax1.plot(best_plot[0], best_plot[1], 'o', linestyle = "-",
|
|
145
|
+ p0, = ax1.plot(best_plot[0], best_plot[1], linestyle = "-",
|
146
|
146
|
alpha=1, lw=2, label = str(best_plot[2])+' brks | Lik='+best_plot[3])
|
147
|
147
|
plot_handles.append(p0)
|
|
148
|
+ #ax1.grid(True,which="both", linestyle='--', alpha = 0.3)
|
148
|
149
|
for k, plot_Lk in enumerate(full_dict['all_epochs']['plots']):
|
149
|
150
|
plot_Lk = str(full_dict['all_epochs']['plots'][k][3])
|
150
|
151
|
# plt.rcParams['font.size'] = fnt_size
|
151
|
|
- p, = ax1.plot(full_dict['all_epochs']['plots'][k][0], full_dict['all_epochs']['plots'][k][1], 'o', linestyle = "--",
|
|
152
|
+ p, = ax1.plot(full_dict['all_epochs']['plots'][k][0], full_dict['all_epochs']['plots'][k][1], linestyle = "-",
|
152
|
153
|
alpha=1/(k+1), lw=1.5, label = str(full_dict['all_epochs']['plots'][k][2])+' brks | Lik='+plot_Lk)
|
153
|
154
|
plot_handles.append(p)
|
154
|
155
|
if theta_scale:
|
|
@@ -160,12 +161,20 @@ def plot_all_epochs_thetafolder(full_dict, mu, tgen, title = "Title",
|
160
|
161
|
# ax1.axvline(x=recent_scale_upper_bound)
|
161
|
162
|
else:
|
162
|
163
|
# years
|
163
|
|
- plt.set_xlabel("Time (years)", fontsize=fnt_size)
|
164
|
|
- plt.set_ylabel("Individuals (N)", fontsize=fnt_size)
|
|
164
|
+ if ax is not None:
|
|
165
|
+ plt.set_xlabel("Time (years)", fontsize=fnt_size)
|
|
166
|
+ plt.set_ylabel("Effective pop. size (Ne)", fontsize=fnt_size)
|
|
167
|
+ else:
|
|
168
|
+ plt.xlabel("Time (years)", fontsize=fnt_size)
|
|
169
|
+ plt.ylabel("Effective pop. size (Ne)", fontsize=fnt_size)
|
|
170
|
+ # x_ticks = ax1.get_xticks()
|
|
171
|
+ # ax1.set_xticklabels([f'{k:.0e}\n{k/(mu):.0e}\n{k/(mu)*tgen:.0e}' for k in x_ticks], fontsize = fnt_size*0.5)
|
|
172
|
+ # ax1.set_xticklabels([f'{k}\n{k/(mu)}\n{k/(mu)*tgen}' for k in x_ticks], fontsize = fnt_size*0.8)
|
165
|
173
|
# plt.rcParams['font.size'] = fnt_size
|
166
|
174
|
# print(fnt_size, "rcParam font.size=", plt.rcParams['font.size'])
|
167
|
175
|
ax1.legend(handles = plot_handles, loc='best', fontsize = fnt_size*0.5)
|
168
|
176
|
ax1.set_title(title)
|
|
177
|
+ breaks = len(full_dict['all_epochs']['plots'])
|
169
|
178
|
if ax is None:
|
170
|
179
|
plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
171
|
180
|
# plot likelihood against nb of breakpoints
|
|
@@ -203,8 +212,9 @@ def plot_all_epochs_thetafolder(full_dict, mu, tgen, title = "Title",
|
203
|
212
|
ax3.set_title(title+" AIC")
|
204
|
213
|
if ax is None:
|
205
|
214
|
plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf')
|
206
|
|
- # return plots
|
207
|
|
- return ax[0], ax[1]
|
|
215
|
+ else:
|
|
216
|
+ # return plots
|
|
217
|
+ return ax[0], ax[1]
|
208
|
218
|
|
209
|
219
|
def save_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_scale = True, input = None, output = None):
|
210
|
220
|
#scenari = {}
|
|
@@ -248,10 +258,11 @@ def save_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
248
|
258
|
# do something with the theta without bp and skip the plotting
|
249
|
259
|
N0 = y[0]
|
250
|
260
|
#continue
|
251
|
|
- for i in range(len(y)):
|
252
|
|
- # divide by N0
|
253
|
|
- y[i] = y[i]/N0
|
254
|
|
- x[i] = x[i]/N0
|
|
261
|
+ if theta_scale:
|
|
262
|
+ for i in range(len(y)):
|
|
263
|
+ # divide by N0
|
|
264
|
+ y[i] = y[i]/N0
|
|
265
|
+ x[i] = x[i]/N0
|
255
|
266
|
top_plots[greatest_likelihood] = x,y,epoch
|
256
|
267
|
plots_likelihoods = list(top_plots.keys())
|
257
|
268
|
for i in range(len(plots_likelihoods)):
|
|
@@ -294,9 +305,10 @@ def save_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
294
|
305
|
# to return : plots ; Ln_Brks ; AIC_Brks ; best_Ln ; best_AIC
|
295
|
306
|
# 'plots' dict keys: 'best', {epochs}('0', '1',...)
|
296
|
307
|
if input == None:
|
297
|
|
- saved_plots = {"S":S, "S0":S0, "L":L, "all_epochs":plots, "Ln_Brks":Ln_Brks,
|
298
|
|
- "AIC_Brks":AIC_Brks, "best_Ln":best_Ln,
|
299
|
|
- "best_AIC":best_AIC, "best_epoch_by_AIC":selected_brks_nb}
|
|
308
|
+ saved_plots = {"S":S, "S0":S0, "L":L, "mu":mu, "tgen":tgen,
|
|
309
|
+ "all_epochs":plots, "Ln_Brks":Ln_Brks,
|
|
310
|
+ "AIC_Brks":AIC_Brks, "best_Ln":best_Ln,
|
|
311
|
+ "best_AIC":best_AIC, "best_epoch_by_AIC":selected_brks_nb}
|
300
|
312
|
else:
|
301
|
313
|
# if the dict has to be loaded from input
|
302
|
314
|
with open(input, 'r') as json_file:
|
|
@@ -304,6 +316,8 @@ def save_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
304
|
316
|
saved_plots["S"] = S
|
305
|
317
|
saved_plots["S0"] = S0
|
306
|
318
|
saved_plots["L"] = L
|
|
319
|
+ saved_plots["mu"] = mu
|
|
320
|
+ saved_plots["tgen"] = tgen
|
307
|
321
|
saved_plots["all_epochs"] = plots
|
308
|
322
|
saved_plots["Ln_Brks"] = Ln_Brks
|
309
|
323
|
saved_plots["AIC_Brks"] = AIC_Brks
|
|
@@ -369,9 +383,10 @@ def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
369
|
383
|
for k in range(2, len(y)+2):
|
370
|
384
|
prop.append(y[k-2] / (k - 1) / sum_theta_i)
|
371
|
385
|
prop = prop[::-1]
|
372
|
|
- # normalise to N0 (N0 of epoch1)
|
373
|
|
- for i in range(len(y)):
|
374
|
|
- y[i] = y[i]/N0
|
|
386
|
+ if theta_scale :
|
|
387
|
+ # normalise to N0 (N0 of epoch1)
|
|
388
|
+ for i in range(len(y)):
|
|
389
|
+ y[i] = y[i]/N0
|
375
|
390
|
# x_plot, y_plot = plot_straight_x_y(x, y)
|
376
|
391
|
p = x, y
|
377
|
392
|
# add plot to the list of all plots to superimpose
|
|
@@ -394,8 +409,9 @@ def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
394
|
409
|
y += list(np.repeat(thetas[i], len(group)))
|
395
|
410
|
if epoch == 0:
|
396
|
411
|
N0 = y[0]
|
397
|
|
- for i in range(len(y)):
|
398
|
|
- y[i] = y[i]/N0
|
|
412
|
+ if theta_scale :
|
|
413
|
+ for i in range(len(y)):
|
|
414
|
+ y[i] = y[i]/N0
|
399
|
415
|
x_2 = []
|
400
|
416
|
T = 0
|
401
|
417
|
for i in range(len(x)):
|
|
@@ -426,10 +442,10 @@ def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
426
|
442
|
json.dump(saved_plots, json_file)
|
427
|
443
|
return saved_plots
|
428
|
444
|
|
429
|
|
-def plot_scaled_theta(plot_lines, prop, title, ax = None, n_ticks = 10, subset = None):
|
|
445
|
+def plot_scaled_theta(plot_lines, prop, title, mu, tgen, swp2_lines = None, ax = None, n_ticks = 10, subset = None, theta_scale = False):
|
430
|
446
|
# fig 2 & 3
|
431
|
447
|
if ax is None:
|
432
|
|
- my_dpi = 300
|
|
448
|
+ my_dpi = 500
|
433
|
449
|
fnt_size = 18
|
434
|
450
|
fig2, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
435
|
451
|
fig3, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
@@ -442,37 +458,79 @@ def plot_scaled_theta(plot_lines, prop, title, ax = None, n_ticks = 10, subset =
|
442
|
458
|
lines_fig2 = []
|
443
|
459
|
lines_fig3 = []
|
444
|
460
|
#plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
461
|
+ if swp2_lines:
|
|
462
|
+ for k in range(len(swp2_lines[0])):
|
|
463
|
+ swp2_lines[0][k] = swp2_lines[0][k]/tgen*mu
|
|
464
|
+ for k in range(len(swp2_lines[1])):
|
|
465
|
+ swp2_lines[1][k] = swp2_lines[1][k]*4*mu
|
|
466
|
+ # plot_lines = [[swp2_lines[0], swp2_lines[1]]]+plot_lines
|
|
467
|
+
|
|
468
|
+ x2_plot, y2_plot = plot_straight_x_y(swp2_lines[0],swp2_lines[1])
|
|
469
|
+ p2, = ax2.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2')
|
|
470
|
+ lines_fig2.append(p2)
|
|
471
|
+ # Plotting (fig 3) which is the same but log scale for x
|
|
472
|
+ p3, = ax3.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2')
|
|
473
|
+ lines_fig3.append(p3)
|
445
|
474
|
nb_breaks = len(plot_lines)
|
446
|
475
|
for breaks, plot in enumerate(plot_lines):
|
447
|
476
|
if subset is not None:
|
448
|
477
|
if breaks not in subset :
|
449
|
478
|
# skip if not in subset
|
450
|
|
- if max(subset) > nb_breaks and breaks == nb_breaks-1:
|
|
479
|
+ if max(subset) > nb_breaks and breaks == nb_breaks:
|
451
|
480
|
pass
|
452
|
481
|
else:
|
453
|
482
|
continue
|
454
|
483
|
x,y=plot
|
|
484
|
+ # y = [k/(4*mu) for k in y]
|
|
485
|
+ # x = [k/(mu)*tgen for k in x]
|
455
|
486
|
x2_plot, y2_plot = plot_straight_x_y(x,y)
|
456
|
487
|
p2, = ax2.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(breaks)+' brks')
|
457
|
488
|
lines_fig2.append(p2)
|
458
|
489
|
# Plotting (fig 3) which is the same but log scale for x
|
459
|
490
|
p3, = ax3.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(breaks)+' brks')
|
460
|
491
|
lines_fig3.append(p3)
|
461
|
|
- ax2.set_xlabel("Relative scale", fontsize=fnt_size)
|
462
|
|
- ax2.set_ylabel("theta", fontsize=fnt_size)
|
463
|
|
- ax2.set_title(title, fontsize=fnt_size)
|
464
|
|
- ax2.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
|
492
|
+
|
|
493
|
+ ax3.axvline(x=500/tgen*mu, linestyle="--")
|
|
494
|
+ if theta_scale:
|
|
495
|
+ xlabel = "Theta scaled by N0"
|
|
496
|
+ ylabel = "Theta scaled by N0"
|
|
497
|
+ else:
|
|
498
|
+ xlabel = "Theta scale"
|
|
499
|
+ ylabel = "Theta"
|
465
|
500
|
if ax is None:
|
|
501
|
+ # if not ax, then use the plt syntax, not ax...
|
|
502
|
+ plt.xlabel(xlabel, fontsize=fnt_size)
|
|
503
|
+ plt.ylabel(ylabel, fontsize=fnt_size)
|
|
504
|
+ plt.xlim(left=0)
|
|
505
|
+ x_ticks = list(plt.xticks())[0]
|
|
506
|
+ plt.gca().set_xticks(x_ticks)
|
|
507
|
+ plt.gca().set_xticklabels([f'{k:.0e}\n{k/(mu):.0e}\n{k/(mu)*tgen:.0e}' for k in x_ticks], fontsize = fnt_size*0.5)
|
|
508
|
+ plt.title(title, fontsize=fnt_size)
|
|
509
|
+ plt.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
|
510
|
+ plt.text(-0.13, -0.135, 'Coal. time\nGen. time\nYears', ha='left', va='bottom', transform=ax3.transAxes)
|
|
511
|
+ plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
|
466
|
512
|
# nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
467
|
513
|
plt.savefig(title+'_plot2_'+str(len(plot_lines))+'.pdf')
|
468
|
514
|
# close fig2 to save memory
|
469
|
515
|
plt.close(fig2)
|
|
516
|
+ else:
|
|
517
|
+ # when ax subplotting is used
|
|
518
|
+ ax2.set_xlabel(xlabel, fontsize=fnt_size)
|
|
519
|
+ ax2.set_ylabel(ylabel, fontsize=fnt_size)
|
|
520
|
+ ax2.set_title(title, fontsize=fnt_size)
|
|
521
|
+ ax2.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
470
|
522
|
ax3.set_xscale('log')
|
471
|
523
|
ax3.set_yscale('log')
|
472
|
|
- ax3.set_xlabel("log Relative scale", fontsize=fnt_size)
|
|
524
|
+ ax3.set_xlabel("time log scale", fontsize=fnt_size)
|
473
|
525
|
ax3.set_ylabel("theta", fontsize=fnt_size)
|
474
|
526
|
ax3.set_title(title, fontsize=fnt_size)
|
475
|
527
|
ax3.legend(handles=lines_fig3, loc='best', fontsize = fnt_size*0.5)
|
|
528
|
+ x_ticks = list(ax3.get_xticks())
|
|
529
|
+ ax3.set_xlim(left=min(x_ticks))
|
|
530
|
+ ax3.set_xticks(x_ticks)
|
|
531
|
+ ax3.set_xticklabels([f'{k:.0e}\n{k/(mu):.0e}\n{k/(mu)*tgen:.0e}' for k in x_ticks], fontsize = fnt_size*0.5)
|
|
532
|
+ plt.text(-0.13, -0.135, 'Coal. time\nGen. time\nYears', ha='left', va='bottom', transform=ax3.transAxes)
|
|
533
|
+ plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
|
476
|
534
|
if ax is None:
|
477
|
535
|
# nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
|
478
|
536
|
plt.savefig(title+'_plot3_'+str(len(plot_lines))+'_log.pdf')
|
|
@@ -480,7 +538,7 @@ def plot_scaled_theta(plot_lines, prop, title, ax = None, n_ticks = 10, subset =
|
480
|
538
|
plt.close(fig3)
|
481
|
539
|
return ax
|
482
|
540
|
|
483
|
|
-def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10):
|
|
541
|
+def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10, rescale = False, subset = None):
|
484
|
542
|
# multiple fig
|
485
|
543
|
if ax is None:
|
486
|
544
|
# intialize figure 1
|
|
@@ -494,7 +552,6 @@ def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10):
|
494
|
552
|
ax1 = ax[0, 0]
|
495
|
553
|
plt.subplots_adjust(wspace=0.3, hspace=0.3)
|
496
|
554
|
plots = []
|
497
|
|
-
|
498
|
555
|
for epoch, plot in enumerate(plot_lines):
|
499
|
556
|
x,y = plot
|
500
|
557
|
x_plot, y_plot = plot_straight_x_y(x,y)
|
|
@@ -527,40 +584,103 @@ def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10):
|
527
|
584
|
# return plots
|
528
|
585
|
return ax
|
529
|
586
|
|
530
|
|
-def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale = True, selected_breaks = []):
|
|
587
|
+def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale = False, selected_breaks = []):
|
531
|
588
|
my_dpi = 300
|
532
|
|
-
|
533
|
|
- save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, output = title+"_plotdata.json")
|
534
|
|
- save_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, input = title+"_plotdata.json", output = title+"_plotdata.json")
|
|
589
|
+ saved_plots_dict = save_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, output = title+"_plotdata.json")
|
|
590
|
+ nb_of_epochs = len(saved_plots_dict["all_epochs"]["plots"])
|
|
591
|
+ print(nb_of_epochs)
|
|
592
|
+ best_epoch = saved_plots_dict["best_epoch_by_AIC"]
|
|
593
|
+ save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = nb_of_epochs, input = title+"_plotdata.json", output = title+"_plotdata.json")
|
535
|
594
|
|
536
|
595
|
with open(title+"_plotdata.json", 'r') as json_file:
|
537
|
596
|
loaded_data = json.load(json_file)
|
538
|
|
- # plot page 1 of summary
|
539
|
|
- fig1, ax1 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
540
|
|
- # fig1.tight_layout()
|
541
|
|
- # Adjust absolute space between the top and bottom rows
|
542
|
|
- fig1.subplots_adjust(hspace=0.35) # Adjust this value based on your requirement
|
543
|
|
- # plot page 2 of summary
|
544
|
|
- fig2, ax2 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
545
|
|
- # fig2.tight_layout()
|
546
|
|
- ax1 = plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
|
547
|
|
- prop = loaded_data['prop'], title = title, ax = ax1)
|
548
|
|
- ax1 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
|
549
|
|
- prop = loaded_data['prop'], title = title, ax = ax1, subset=[loaded_data['best_epoch_by_AIC']]+selected_breaks)
|
550
|
|
- ax2 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
|
551
|
|
- prop = loaded_data['prop'], title = title, ax = ax2)
|
552
|
|
- ax1, ax2 = plot_all_epochs_thetafolder(loaded_data, mu, tgen, title, theta_scale, ax = [ax1, ax2])
|
553
|
|
- fig1.savefig(title+'_combined_p1.pdf')
|
554
|
|
- print("Wrote", title+'_combined_p1.pdf')
|
555
|
|
- fig2.savefig(title+'_combined_p2.pdf')
|
556
|
|
- print("Wrote", title+'_combined_p2.pdf')
|
|
597
|
+
|
|
598
|
+ # START OF COMBINED PLOT CODE
|
|
599
|
+
|
|
600
|
+ # # plot page 1 of summary
|
|
601
|
+ # fig1, ax1 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
|
602
|
+ # # fig1.tight_layout()
|
|
603
|
+ # # Adjust absolute space between the top and bottom rows
|
|
604
|
+ # fig1.subplots_adjust(hspace=0.35) # Adjust this value based on your requirement
|
|
605
|
+ # # plot page 2 of summary
|
|
606
|
+ # fig2, ax2 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
|
607
|
+ # # fig2.tight_layout()
|
|
608
|
+ # ax1 = plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
|
|
609
|
+ # prop = loaded_data['prop'], title = title, ax = ax1)
|
|
610
|
+ # ax1 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
|
|
611
|
+ # prop = loaded_data['prop'], title = title, ax = ax1, subset=[loaded_data['best_epoch_by_AIC']]+selected_breaks)
|
|
612
|
+ # ax2 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
|
|
613
|
+ # prop = loaded_data['prop'], title = title, ax = ax2)
|
|
614
|
+ # ax1, ax2 = plot_all_epochs_thetafolder(loaded_data, mu, tgen, title, theta_scale, ax = [ax1, ax2])
|
|
615
|
+
|
|
616
|
+ # fig1.savefig(title+'_combined_p1.pdf')
|
|
617
|
+ # print("Wrote", title+'_combined_p1.pdf')
|
|
618
|
+ # fig2.savefig(title+'_combined_p2.pdf')
|
|
619
|
+ # print("Wrote", title+'_combined_p2.pdf')
|
|
620
|
+
|
|
621
|
+ # END OF COMBINED PLOT CODE
|
|
622
|
+
|
|
623
|
+
|
|
624
|
+ # Start of Parsing real swp2 output
|
|
625
|
+ folder_splitted = folder_path.split("/")
|
|
626
|
+ swp2_summary = "/".join(folder_splitted[:-2])+'/'+folder_splitted[-3]+".final.summary"
|
|
627
|
+ swp2_vals = parse_stairwayplot_output_summary(stwplt_out = swp2_summary)
|
|
628
|
+ swp2_x, swp2_y = swp2_vals[0], swp2_vals[1]
|
|
629
|
+ # End of Parsing real swp2 output
|
557
|
630
|
plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
|
558
|
631
|
prop = loaded_data['prop'], title = title, ax = None)
|
559
|
|
- plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
|
560
|
|
- prop = loaded_data['prop'], title = title, ax = None)
|
|
632
|
+ plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], mu = mu, tgen = tgen, subset=[loaded_data['best_epoch_by_AIC']]+selected_breaks,
|
|
633
|
+ # plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], subset=list(range(0,3))+[loaded_data['best_epoch_by_AIC']]+selected_breaks,
|
|
634
|
+ prop = loaded_data['prop'], title = title, swp2_lines = [swp2_x, swp2_y], ax = None)
|
|
635
|
+ plot_all_epochs_thetafolder(loaded_data, mu, tgen, title, theta_scale, ax = None)
|
|
636
|
+
|
|
637
|
+ # plt.close(fig1)
|
|
638
|
+ # plt.close(fig2)
|
|
639
|
+def parse_stairwayplot_output_summary(stwplt_out, xlim = None, ylim = None, title = "default title", plot = False):
|
|
640
|
+ #col 5
|
|
641
|
+ year = []
|
|
642
|
+ # col 6
|
|
643
|
+ ne_median = []
|
|
644
|
+ ne_2_5 = []
|
|
645
|
+ ne_97_5 = []
|
|
646
|
+ ne_12_5 = []
|
|
647
|
+ # col 10
|
|
648
|
+ ne_87_5 = []
|
|
649
|
+ with open(stwplt_out, "r") as stwplt_stream:
|
|
650
|
+ for line in stwplt_stream:
|
|
651
|
+ ## Line format
|
|
652
|
+ # mutation_per_site n_estimation theta_per_site_median theta_per_site_2.5% theta_per_site_97.5% year Ne_median Ne_2.5% Ne_97.5% Ne_12.5% Ne_87.5%
|
|
653
|
+ if not line.startswith("mutation_per_site"):
|
|
654
|
+ #not header
|
|
655
|
+ values = line.strip().split()
|
|
656
|
+ year.append(float(values[5]))
|
|
657
|
+ ne_median.append(float(values[6]))
|
|
658
|
+ ne_2_5.append(float(values[7]))
|
|
659
|
+ ne_97_5.append(float(values[8]))
|
|
660
|
+ ne_12_5.append(float(values[9]))
|
|
661
|
+ ne_87_5.append(float(values[10]))
|
561
|
662
|
|
562
|
|
- plt.close(fig1)
|
563
|
|
- plt.close(fig2)
|
|
663
|
+ vals = [year, ne_median, ne_2_5, ne_97_5, ne_12_5, ne_87_5]
|
|
664
|
+ if plot :
|
|
665
|
+ # plot parsed data
|
|
666
|
+ label = ["Ne median", "Ne 2.5%", "Ne 97.5%", "Ne 12.5%", "Ne 87.5%"]
|
|
667
|
+ for i in range(1, 5):
|
|
668
|
+ fig, = plt.plot(year, vals[i], '--', alpha = 0.4)
|
|
669
|
+ fig.set_label(label[i])
|
|
670
|
+ # # last plot is median
|
|
671
|
+ fig, = plt.plot(year, ne_median, 'r-', lw=2)
|
|
672
|
+ fig.set_label(label[0])
|
|
673
|
+ plt.legend()
|
|
674
|
+ plt.ylabel("Individuals (Ne)")
|
|
675
|
+ plt.xlabel("Time (years)")
|
|
676
|
+ if xlim:
|
|
677
|
+ plt.xlim(xlim)
|
|
678
|
+ if ylim:
|
|
679
|
+ plt.ylim(ylim)
|
|
680
|
+ plt.title(title)
|
|
681
|
+ plt.show()
|
|
682
|
+ plt.close()
|
|
683
|
+ return vals
|
564
|
684
|
|
565
|
685
|
if __name__ == "__main__":
|
566
|
686
|
|