Browse Source

Remove unused functions for swp2

tforest 11 months ago
parent
commit
6a6d4bf6f9
1 changed files with 8 additions and 63 deletions
  1. 8 63
      swp2.py

+ 8 - 63
swp2.py View File

@@ -3,13 +3,11 @@ import os
3 3
 import numpy as np
4 4
 import math
5 5
 import json
6
-import io
7
-from scipy.special import gammaln
8
-from matplotlib.backends.backend_pdf import PdfPages
9
-from matplotlib.ticker import MaxNLocator
10
-from mpl_toolkits.axes_grid1.inset_locator import inset_axes
11
-from matplotlib.ticker import MultipleLocator
6
+
12 7
 def log_facto(k):
8
+    """
9
+    Using the Stirling's approximation
10
+    """
13 11
     k = int(k)
14 12
     if k > 1e6:
15 13
         return k * np.log(k) - k + np.log(2*math.pi*k)/2
@@ -18,14 +16,6 @@ def log_facto(k):
18 16
         val += np.log(i)
19 17
     return val
20 18
 
21
-def log_facto_1(k):
22
-    startf = 1 # start of factorial sequence
23
-    stopf  = int(k+1) # end of of factorial sequence
24
-
25
-    q = gammaln(range(startf+1, stopf+1)) # n! = G(n+1)
26
-
27
-    return q[-1]
28
-
29 19
 def return_x_y_from_stwp_theta_file(stwp_theta_file, breaks, mu, tgen, relative_theta_scale = False):
30 20
     with open(stwp_theta_file, "r") as swp_file:
31 21
         # Read the first line
@@ -128,51 +118,6 @@ def return_x_y_from_stwp_theta_file(stwp_theta_file, breaks, mu, tgen, relative_
128 118
     #     #     x[i] = x[i]/N0
129 119
     return x,y,likelihood,thetas,sfs,L
130 120
 
131
-def return_x_y_from_stwp_theta_file_as_is(stwp_theta_file, breaks, mu, tgen, relative_theta_scale = False):
132
-    with open(stwp_theta_file, "r") as swp_file:
133
-        # Read the first line
134
-        line = swp_file.readline()
135
-        L = float(line.split()[2])
136
-        rands = swp_file.readline()
137
-        line = swp_file.readline()
138
-        # skip empty lines before SFS
139
-        while line == "\n":
140
-            line = swp_file.readline()
141
-        sfs = np.array(line.split()).astype(float)
142
-        # Process lines until the end of the file
143
-        while line:
144
-            # check at each line
145
-            if line.startswith("dim") :
146
-                dim = int(line.split()[1])
147
-                if dim == breaks+1:
148
-                    likelihood = line.split()[5]
149
-                    groups = line.split()[6:6+dim]
150
-                    theta_site = line.split()[6+dim:6+dim+1+dim]
151
-                elif dim < breaks+1:
152
-                    line = swp_file.readline()
153
-                    continue
154
-                elif dim > breaks+1:
155
-                    break
156
-                    #return 0,0,0
157
-            # Read the next line
158
-            line = swp_file.readline()
159
-    #### END of parsing
160
-    # quit this file if the number of dimensions is incorrect
161
-    if dim < breaks+1:
162
-        return 0,0
163
-    # get n, the last bin of the last group
164
-    # revert the list of groups as the most recent times correspond
165
-    # to the closest and last leafs of the coal. tree.
166
-    groups = groups[::-1]
167
-    theta_site = theta_site[::-1]
168
-
169
-    thetas = {}
170
-
171
-    for i in range(len(groups)):
172
-        groups[i] = groups[i].split(',')
173
-        # print(groups[i], len(groups[i]))
174
-        thetas[i] = [float(theta_site[i]), groups[i], likelihood]
175
-    return thetas, sfs
176 121
 
177 122
 def plot_k_epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title", theta_scale = True):
178 123
     scenari = {}
@@ -180,7 +125,7 @@ def plot_k_epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title"
180 125
     for file_name in os.listdir(folder_path):
181 126
         if os.path.isfile(os.path.join(folder_path, file_name)):
182 127
             # Perform actions on each file
183
-            x,y,likelihood,sfs,L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
128
+            x, y, likelihood, theta, sfs, L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
184 129
                                                              tgen = tgen,
185 130
                                      mu = mu, relative_theta_scale = theta_scale)
186 131
             if x == 0 or y == 0:
@@ -396,7 +341,7 @@ def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
396 341
         cpt +=1
397 342
         if os.path.isfile(os.path.join(folder_path, file_name)):
398 343
             for k in range(breaks_max):
399
-                thetas,sfs = return_x_y_from_stwp_theta_file_as_is(folder_path+file_name, breaks = k,
344
+                x,y,likelihood,thetas,sfs,L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = k,
400 345
                                                                  tgen = tgen,
401 346
                                                                  mu = mu, relative_theta_scale = theta_scale)
402 347
                 if thetas == 0:
@@ -591,7 +536,7 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
591 536
         cpt +=1
592 537
         if os.path.isfile(os.path.join(folder_path, file_name)):
593 538
             for k in range(breaks_max):
594
-                thetas,sfs = return_x_y_from_stwp_theta_file_as_is(folder_path+file_name, breaks = k,
539
+                x, y, likelihood, theta, sfs, L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = k,
595 540
                                                                  tgen = tgen,
596 541
                                                                  mu = mu, relative_theta_scale = theta_scale)
597 542
                 if thetas == 0:
@@ -751,7 +696,7 @@ def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale =
751 696
     # # plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = None)
752 697
     # # plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = None)
753 698
     # # plt.clf()
754
-    # save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, output = title+"_plotdata.json")
699
+    save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, output = title+"_plotdata.json")
755 700
     with open(title+"_plotdata.json", 'r') as json_file:
756 701
         loaded_data = json.load(json_file)
757 702
     # plot page 1 of summary