|
@@ -2,10 +2,11 @@ import matplotlib.pyplot as plt
|
2
|
2
|
import os
|
3
|
3
|
import numpy as np
|
4
|
4
|
import math
|
|
5
|
+import json
|
|
6
|
+import io
|
5
|
7
|
from scipy.special import gammaln
|
6
|
8
|
from matplotlib.backends.backend_pdf import PdfPages
|
7
|
9
|
from matplotlib.ticker import MaxNLocator
|
8
|
|
-import io
|
9
|
10
|
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
10
|
11
|
from matplotlib.ticker import MultipleLocator
|
11
|
12
|
def log_facto(k):
|
|
@@ -197,8 +198,6 @@ def plot_k_epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title"
|
197
|
198
|
my_dpi = 300
|
198
|
199
|
plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
199
|
200
|
plt.plot(x, y, 'r-', lw=2, label = 'Lik='+greatest_likelihood)
|
200
|
|
- plt.xlim(1e-3, 1)
|
201
|
|
- plt.ylim(0, 10)
|
202
|
201
|
#plt.yscale('log')
|
203
|
202
|
plt.xscale('log')
|
204
|
203
|
plt.grid(True,which="both", linestyle='--', alpha = 0.3)
|
|
@@ -271,7 +270,6 @@ def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
271
|
270
|
fnt_size = 12
|
272
|
271
|
# plt.rcParams['font.size'] = fnt_size
|
273
|
272
|
ax1 = ax[0,0]
|
274
|
|
- #ax1.set_xlim(1e-3, 1)
|
275
|
273
|
ax1.set_yscale('log')
|
276
|
274
|
ax1.set_xscale('log')
|
277
|
275
|
ax1.grid(True,which="both", linestyle='--', alpha = 0.3)
|
|
@@ -321,7 +319,6 @@ def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
321
|
319
|
# years
|
322
|
320
|
plt.set_xlabel("Time (years)", fontsize=fnt_size)
|
323
|
321
|
plt.set_ylabel("Individuals (N)", fontsize=fnt_size)
|
324
|
|
- ax1.set_xlim(1e-5, 1)
|
325
|
322
|
# plt.rcParams['font.size'] = fnt_size
|
326
|
323
|
# print(fnt_size, "rcParam font.size=", plt.rcParams['font.size'])
|
327
|
324
|
ax1.legend(handles = plot_handles, loc='best', fontsize = fnt_size*0.5)
|
|
@@ -382,6 +379,189 @@ def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
382
|
379
|
# return plots
|
383
|
380
|
return ax
|
384
|
381
|
|
|
382
|
+def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
|
383
|
+ breaks_max = 10, output = None):
|
|
384
|
+ """
|
|
385
|
+ Save theta values as is to do basic plots.
|
|
386
|
+ """
|
|
387
|
+ cpt = 0
|
|
388
|
+ epochs = {}
|
|
389
|
+ len_sfs = 0
|
|
390
|
+ for file_name in os.listdir(folder_path):
|
|
391
|
+ cpt +=1
|
|
392
|
+ if os.path.isfile(os.path.join(folder_path, file_name)):
|
|
393
|
+ for k in range(breaks_max):
|
|
394
|
+ thetas,sfs = return_x_y_from_stwp_theta_file_as_is(folder_path+file_name, breaks = k,
|
|
395
|
+ tgen = tgen,
|
|
396
|
+ mu = mu, relative_theta_scale = theta_scale)
|
|
397
|
+ if thetas == 0:
|
|
398
|
+ continue
|
|
399
|
+ if len(thetas)-1 != k:
|
|
400
|
+ continue
|
|
401
|
+ if k not in epochs.keys():
|
|
402
|
+ epochs[k] = {}
|
|
403
|
+ likelihood = str(eval(thetas[k][2]))
|
|
404
|
+ epochs[k][likelihood] = thetas
|
|
405
|
+ #epochs[k] = thetas
|
|
406
|
+ print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(k)+"\n*******\n")
|
|
407
|
+ print(cpt, "theta file(s) have been scanned.")
|
|
408
|
+ plots = []
|
|
409
|
+ best_epochs = {}
|
|
410
|
+ for epoch in epochs:
|
|
411
|
+ likelihoods = []
|
|
412
|
+ for key in epochs[epoch].keys():
|
|
413
|
+ likelihoods.append(key)
|
|
414
|
+ likelihoods.sort()
|
|
415
|
+ minLogLn = str(likelihoods[0])
|
|
416
|
+ best_epochs[epoch] = epochs[epoch][minLogLn]
|
|
417
|
+ for epoch, theta in best_epochs.items():
|
|
418
|
+ groups = np.array(list(theta.values()), dtype=object)[:, 1].tolist()
|
|
419
|
+ x = []
|
|
420
|
+ y = []
|
|
421
|
+ thetas = np.array(list(theta.values()), dtype=object)[:, 0]
|
|
422
|
+ for i,group in enumerate(groups):
|
|
423
|
+ x += group[::-1]
|
|
424
|
+ y += list(np.repeat(thetas[i], len(group)))
|
|
425
|
+ if epoch == 0:
|
|
426
|
+ N0 = y[0]
|
|
427
|
+ # compute the proportion of information used at each bin of the SFS
|
|
428
|
+ sum_theta_i = 0
|
|
429
|
+ for i in range(2, len(y)+2):
|
|
430
|
+ sum_theta_i+=y[i-2] / (i-1)
|
|
431
|
+ prop = []
|
|
432
|
+ for k in range(2, len(y)+2):
|
|
433
|
+ prop.append(y[k-2] / (k - 1) / sum_theta_i)
|
|
434
|
+ prop = prop[::-1]
|
|
435
|
+ # normalise to N0 (N0 of epoch1)
|
|
436
|
+ for i in range(len(y)):
|
|
437
|
+ y[i] = y[i]/N0
|
|
438
|
+ # x_plot, y_plot = plot_straight_x_y(x, y)
|
|
439
|
+ p = x, y
|
|
440
|
+ # add plot to the list of all plots to superimpose
|
|
441
|
+ plots.append(p)
|
|
442
|
+ cumul = 0
|
|
443
|
+ prop_cumul = []
|
|
444
|
+ for val in prop:
|
|
445
|
+ prop_cumul.append(val+cumul)
|
|
446
|
+ cumul = val+cumul
|
|
447
|
+ prop = prop_cumul
|
|
448
|
+
|
|
449
|
+ lines_fig2 = []
|
|
450
|
+ for epoch, theta in best_epochs.items():
|
|
451
|
+ groups = np.array(list(theta.values()), dtype=object)[:, 1].tolist()
|
|
452
|
+ x = []
|
|
453
|
+ y = []
|
|
454
|
+ thetas = np.array(list(theta.values()), dtype=object)[:, 0]
|
|
455
|
+ for i,group in enumerate(groups):
|
|
456
|
+ x += group[::-1]
|
|
457
|
+ y += list(np.repeat(thetas[i], len(group)))
|
|
458
|
+ if epoch == 0:
|
|
459
|
+ N0 = y[0]
|
|
460
|
+ for i in range(len(y)):
|
|
461
|
+ y[i] = y[i]/N0
|
|
462
|
+ x_2 = []
|
|
463
|
+ T = 0
|
|
464
|
+ for i in range(len(x)):
|
|
465
|
+ x[i] = int(x[i])
|
|
466
|
+ # compute the times as: theta_k / (k*(k-1))
|
|
467
|
+ for i in range(0, len(x)):
|
|
468
|
+ T += y[i] / (x[i]*(x[i]-1))
|
|
469
|
+ x_2.append(T)
|
|
470
|
+ # Save plotting (fig 2)
|
|
471
|
+ x_2 = [0]+x_2
|
|
472
|
+ y = [y[0]]+y
|
|
473
|
+ # x2_plot, y2_plot = plot_straight_x_y(x_2, y)
|
|
474
|
+ p2 = x_2, y
|
|
475
|
+ lines_fig2.append(p2)
|
|
476
|
+
|
|
477
|
+ saved_plots = {"raw_stairs":plots, "scaled_stairs":lines_fig2,
|
|
478
|
+ "prop":prop}
|
|
479
|
+ if output == None:
|
|
480
|
+ output = title+"_plotdata.json"
|
|
481
|
+ with open(output, 'w') as json_file:
|
|
482
|
+ json.dump(saved_plots, json_file)
|
|
483
|
+ return saved_plots
|
|
484
|
+
|
|
485
|
+def plot_raw_stairs(plot_lines, plot_lines2, prop, title, ax = None, n_ticks = 10):
|
|
486
|
+ # multiple fig
|
|
487
|
+ if ax is None:
|
|
488
|
+ # intialize figure 1
|
|
489
|
+ my_dpi = 300
|
|
490
|
+ fnt_size = 18
|
|
491
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
492
|
+ fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
493
|
+ else:
|
|
494
|
+ fnt_size = 12
|
|
495
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
496
|
+ ax1 = ax[0, 1]
|
|
497
|
+ plt.subplots_adjust(wspace=0.3, hspace=0.3)
|
|
498
|
+ plots = []
|
|
499
|
+
|
|
500
|
+ for epoch, plot in enumerate(plot_lines):
|
|
501
|
+ x,y = plot
|
|
502
|
+ x_plot, y_plot = plot_straight_x_y(x,y)
|
|
503
|
+ p, = ax1.plot(x_plot, y_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
504
|
+
|
|
505
|
+ # add plot to the list of all plots to superimpose
|
|
506
|
+ plots.append(p)
|
|
507
|
+ x_ticks = x
|
|
508
|
+ # print(x_ticks)
|
|
509
|
+ #print(prop, "\n", sum(prop))
|
|
510
|
+ #ax.legend(handles=[p0]+plots)
|
|
511
|
+ ax1.set_xlabel("# bin", fontsize=fnt_size)
|
|
512
|
+ # Set the x-axis locator to reduce the number of ticks to 10
|
|
513
|
+ ax1.set_ylabel("theta", fontsize=fnt_size)
|
|
514
|
+ ax1.set_title("Title", fontsize=fnt_size)
|
|
515
|
+ ax1.legend(handles=plots, loc='best', fontsize = fnt_size*0.5)
|
|
516
|
+ ax1.set_xticks(x_ticks)
|
|
517
|
+ step = len(x_ticks)//(n_ticks-1)
|
|
518
|
+ values = x_ticks[::step]
|
|
519
|
+ new_prop = []
|
|
520
|
+ for val in values:
|
|
521
|
+ new_prop.append(prop[int(val)-2])
|
|
522
|
+ new_prop = new_prop[::-1]
|
|
523
|
+ ax1.set_xticks(values)
|
|
524
|
+ ax1.set_xticklabels([f'{values[k]}\n{val:.2f}' for k, val in enumerate(new_prop)], fontsize = fnt_size*0.8)
|
|
525
|
+ if ax is None:
|
|
526
|
+ plt.savefig(title+'_raw'+str(k)+'.pdf')
|
|
527
|
+ # fig 2 & 3
|
|
528
|
+ if ax is None:
|
|
529
|
+ fig2, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
530
|
+ fig3, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
531
|
+ else:
|
|
532
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
533
|
+ # place of plots on the grid
|
|
534
|
+ ax2 = ax[1,0]
|
|
535
|
+ ax3 = ax[1,1]
|
|
536
|
+ lines_fig2 = []
|
|
537
|
+ lines_fig3 = []
|
|
538
|
+ #plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
539
|
+ for epoch, plot in enumerate(plot_lines2):
|
|
540
|
+ x,y=plot
|
|
541
|
+ x2_plot, y2_plot = plot_straight_x_y(x,y)
|
|
542
|
+ p2, = ax2.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
543
|
+ lines_fig2.append(p2)
|
|
544
|
+ # Plotting (fig 3) which is the same but log scale for x
|
|
545
|
+ p3, = ax3.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(epoch)+' brks')
|
|
546
|
+ lines_fig3.append(p3)
|
|
547
|
+ ax2.set_xlabel("Relative scale", fontsize=fnt_size)
|
|
548
|
+ ax2.set_ylabel("theta", fontsize=fnt_size)
|
|
549
|
+ ax2.set_title("Title", fontsize=fnt_size)
|
|
550
|
+ ax2.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
|
|
551
|
+ if ax is None:
|
|
552
|
+ plt.savefig(title+'_plot2_'+str(k)+'.pdf')
|
|
553
|
+ ax3.set_xscale('log')
|
|
554
|
+ ax3.set_yscale('log')
|
|
555
|
+ ax3.set_xlabel("log Relative scale", fontsize=fnt_size)
|
|
556
|
+ ax3.set_ylabel("theta", fontsize=fnt_size)
|
|
557
|
+ ax3.set_title("Title", fontsize=fnt_size)
|
|
558
|
+ ax3.legend(handles=lines_fig3, loc='best', fontsize = fnt_size*0.5)
|
|
559
|
+ if ax is None:
|
|
560
|
+ plt.savefig(title+'_plot3_'+str(k)+'_log.pdf')
|
|
561
|
+ plt.clf()
|
|
562
|
+ # return plots
|
|
563
|
+ return ax
|
|
564
|
+
|
385
|
565
|
def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True, breaks_max = 10, ax = None, n_ticks = 10):
|
386
|
566
|
"""
|
387
|
567
|
Use theta values as is to do basic plots.
|
|
@@ -402,7 +582,7 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
402
|
582
|
continue
|
403
|
583
|
if k not in epochs.keys():
|
404
|
584
|
epochs[k] = {}
|
405
|
|
- likelihood = thetas[k][2]
|
|
585
|
+ likelihood = str(eval(thetas[k][2]))
|
406
|
586
|
epochs[k][likelihood] = thetas
|
407
|
587
|
#epochs[k] = thetas
|
408
|
588
|
print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(k)+"\n*******\n")
|
|
@@ -424,7 +604,7 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
424
|
604
|
for epoch in epochs:
|
425
|
605
|
likelihoods = []
|
426
|
606
|
for key in epochs[epoch].keys():
|
427
|
|
- likelihoods.append(float(key))
|
|
607
|
+ likelihoods.append(key)
|
428
|
608
|
likelihoods.sort()
|
429
|
609
|
minLogLn = str(likelihoods[0])
|
430
|
610
|
best_epochs[epoch] = epochs[epoch][minLogLn]
|
|
@@ -537,24 +717,35 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
537
|
717
|
|
538
|
718
|
def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale = True):
|
539
|
719
|
my_dpi = 300
|
540
|
|
- # Add some extra space for the second axis at the bottom
|
541
|
|
- #plt.rcParams['font.size'] = 18
|
542
|
|
- fig, axs = plt.subplots(3, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
543
|
|
- #plt.rcParams['font.size'] = 12
|
544
|
|
- ax = plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = axs)
|
545
|
|
- ax = plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = axs)
|
546
|
|
- # Adjust layout to prevent clipping of titles
|
547
|
|
- plt.tight_layout()
|
548
|
|
- # Adjust absolute space between the top and bottom rows
|
549
|
|
- #plt.subplots_adjust(hspace=0.7) # Adjust this value based on your requirement
|
550
|
|
- # Save the entire grid as a single figure
|
551
|
|
- plt.savefig(title+'_combined.pdf')
|
552
|
|
- plt.clf()
|
553
|
|
- # # second call for individual plots
|
554
|
|
- # plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = None)
|
555
|
|
- # plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = None)
|
|
720
|
+ # # Add some extra space for the second axis at the bottom
|
|
721
|
+ # #plt.rcParams['font.size'] = 18
|
|
722
|
+ # fig, axs = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
|
723
|
+ # #plt.rcParams['font.size'] = 12
|
|
724
|
+ # ax = plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = axs)
|
|
725
|
+ # ax = plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = axs)
|
|
726
|
+ # # Adjust layout to prevent clipping of titles
|
|
727
|
+ # plt.tight_layout()
|
|
728
|
+ # # Adjust absolute space between the top and bottom rows
|
|
729
|
+ # #plt.subplots_adjust(hspace=0.7) # Adjust this value based on your requirement
|
|
730
|
+ # # Save the entire grid as a single figure
|
|
731
|
+ # plt.savefig(title+'_combined.pdf')
|
556
|
732
|
# plt.clf()
|
|
733
|
+ # # # second call for individual plots
|
|
734
|
+ # # plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = None)
|
|
735
|
+ # # plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = None)
|
|
736
|
+ # # plt.clf()
|
|
737
|
+ # save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, output = title+"_plotdata.json")
|
|
738
|
+
|
|
739
|
+ with open(title+"_plotdata.json", 'r') as json_file:
|
|
740
|
+ loaded_data = json.load(json_file)
|
|
741
|
+
|
|
742
|
+ fig1, ax1 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
|
|
743
|
+ # plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = ax1)
|
|
744
|
+ ax1 = plot_raw_stairs(plot_lines = loaded_data['raw_stairs'], plot_lines2 = loaded_data['scaled_stairs'],
|
|
745
|
+ prop = loaded_data['prop'], title = title, ax = ax1)
|
557
|
746
|
|
|
747
|
+ plt.savefig(title+'_raw_scaled.pdf')
|
|
748
|
+ fig1.clf()
|
558
|
749
|
if __name__ == "__main__":
|
559
|
750
|
|
560
|
751
|
if len(sys.argv) != 4:
|