|
|
|
|
1
|
-
|
|
|
2
|
import matplotlib.pyplot as plt
|
1
|
import matplotlib.pyplot as plt
|
3
|
import os
|
2
|
import os
|
4
|
|
3
|
|
|
|
|
|
29
|
if dim < breaks+1:
|
28
|
if dim < breaks+1:
|
30
|
return 0,0,0
|
29
|
return 0,0,0
|
31
|
# get n, the last bin of the last group
|
30
|
# get n, the last bin of the last group
|
32
|
- #n = int(groups[-1].split(",")[-1])
|
|
|
33
|
# revert the list of groups as the most recent times correspond
|
31
|
# revert the list of groups as the most recent times correspond
|
34
|
# to the closest and last leafs of the coal. tree.
|
32
|
# to the closest and last leafs of the coal. tree.
|
35
|
groups = groups[::-1]
|
33
|
groups = groups[::-1]
|
|
|
34
|
+ theta_site = theta_site[::-1]
|
36
|
# initiate the dict of times
|
35
|
# initiate the dict of times
|
37
|
t = {}
|
36
|
t = {}
|
38
|
- # list of thetas
|
|
|
|
|
37
|
+ # list of thetas
|
39
|
theta_L = []
|
38
|
theta_L = []
|
40
|
sum_t = 0
|
39
|
sum_t = 0
|
41
|
for group_nb, group in enumerate(groups):
|
40
|
for group_nb, group in enumerate(groups):
|
42
|
- print(group_nb, group, theta_site[group_nb], len(theta_site))
|
|
|
|
|
41
|
+ ###print(group_nb, group, theta_site[group_nb], len(theta_site))
|
43
|
# store all the thetas one by one, with one theta per group
|
42
|
# store all the thetas one by one, with one theta per group
|
44
|
theta_L.append(float(theta_site[group_nb]))
|
43
|
theta_L.append(float(theta_site[group_nb]))
|
45
|
# if the group is of size 1
|
44
|
# if the group is of size 1
|
|
|
|
|
51
|
i = int(group.split(",")[0])
|
50
|
i = int(group.split(",")[0])
|
52
|
j = int(group.split(",")[-1])
|
51
|
j = int(group.split(",")[-1])
|
53
|
t[i] = 0
|
52
|
t[i] = 0
|
|
|
53
|
+ #t =
|
54
|
if len(group.split(',')) == 1:
|
54
|
if len(group.split(',')) == 1:
|
55
|
k = i
|
55
|
k = i
|
56
|
t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
|
56
|
t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
|
57
|
else:
|
57
|
else:
|
58
|
- for k in range(i, j+1):
|
|
|
|
|
58
|
+ for k in range(j, i-1, -1 ):
|
59
|
t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
|
59
|
t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
|
60
|
# we add the cumulative times at the end
|
60
|
# we add the cumulative times at the end
|
61
|
t[i] += sum_t
|
61
|
t[i] += sum_t
|
62
|
sum_t = t[i]
|
62
|
sum_t = t[i]
|
63
|
# build the y axis (sizes)
|
63
|
# build the y axis (sizes)
|
64
|
y = []
|
64
|
y = []
|
65
|
- #theta_L.sort(reverse=True)
|
|
|
66
|
for theta in theta_L:
|
65
|
for theta in theta_L:
|
67
|
# with size N = theta/4mu
|
66
|
# with size N = theta/4mu
|
68
|
size = theta / (4*mu)
|
67
|
size = theta / (4*mu)
|
69
|
y.append(size)
|
68
|
y.append(size)
|
70
|
y.append(size)
|
69
|
y.append(size)
|
71
|
-
|
|
|
72
|
# build the time x axis
|
70
|
# build the time x axis
|
73
|
x = [0]
|
71
|
x = [0]
|
74
|
- # need to fix: t.values are sorted? and in reverse order because the groups and the times are sorted in opposite order
|
|
|
75
|
for time in range(0, len(t.values())-1):
|
72
|
for time in range(0, len(t.values())-1):
|
76
|
x.append(list(t.values())[time])
|
73
|
x.append(list(t.values())[time])
|
77
|
x.append(list(t.values())[time])
|
74
|
x.append(list(t.values())[time])
|
78
|
x.append(list(t.values())[len(t.values())-1])
|
75
|
x.append(list(t.values())[len(t.values())-1])
|
79
|
-
|
|
|
80
|
- #x = x[::-1]
|
|
|
81
|
- #y = y[::-1]
|
|
|
82
|
- #x.sort(reverse=True)
|
|
|
83
|
- #y.sort(reverse=True)
|
|
|
84
|
-
|
|
|
85
|
return x,y,likelihood
|
76
|
return x,y,likelihood
|
86
|
|
77
|
|
87
|
def plot_3epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title"):
|
78
|
def plot_3epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title"):
|
88
|
-
|
|
|
|
|
79
|
+
|
89
|
scenari = {}
|
80
|
scenari = {}
|
90
|
cpt = 0
|
81
|
cpt = 0
|
91
|
-
|
|
|
|
|
82
|
+
|
92
|
for file_name in os.listdir(folder_path):
|
83
|
for file_name in os.listdir(folder_path):
|
93
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
84
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
94
|
# Perform actions on each file
|
85
|
# Perform actions on each file
|
95
|
- x,y,likelihood = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
|
|
|
86
|
+ x,y,likelihood = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
96
|
tgen = tgen,
|
87
|
tgen = tgen,
|
97
|
mu = mu)
|
88
|
mu = mu)
|
98
|
if x == 0 or y == 0:
|
89
|
if x == 0 or y == 0:
|
|
|
|
|
100
|
cpt +=1
|
91
|
cpt +=1
|
101
|
scenari[likelihood] = x,y
|
92
|
scenari[likelihood] = x,y
|
102
|
print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
|
93
|
print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
|
103
|
- print(cpt, "theta files have been scanned.")
|
|
|
|
|
94
|
+ print(cpt, "theta file(s) have been scanned.")
|
104
|
# sort starting by the smallest -log(Likelihood)
|
95
|
# sort starting by the smallest -log(Likelihood)
|
105
|
best10_scenari = (sorted(list(scenari.keys())))[:10]
|
96
|
best10_scenari = (sorted(list(scenari.keys())))[:10]
|
106
|
print("10 greatest Likelihoods", best10_scenari)
|
97
|
print("10 greatest Likelihoods", best10_scenari)
|
|
|
|
|
109
|
my_dpi = 300
|
100
|
my_dpi = 300
|
110
|
plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
101
|
plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
111
|
plt.plot(x, y, 'r-', lw=2, label = 'Lik='+greatest_likelihood)
|
102
|
plt.plot(x, y, 'r-', lw=2, label = 'Lik='+greatest_likelihood)
|
|
|
103
|
+ plt.yscale('log')
|
|
|
104
|
+ #plt.xscale('log')
|
|
|
105
|
+ plt.grid(True,which="both", linestyle='--')
|
|
|
106
|
+
|
112
|
for scenario in best10_scenari[1:]:
|
107
|
for scenario in best10_scenari[1:]:
|
113
|
x,y = scenari[scenario]
|
108
|
x,y = scenari[scenario]
|
114
|
- print("\n---- Lik:",scenario,"\n\nt=", x,"\n\nN=",y, "\n\n")
|
|
|
|
|
109
|
+ #print("\n---- Lik:",scenario,"\n\nt=", x,"\n\nN=",y, "\n\n")
|
115
|
plt.plot(x, y, '--', lw=1, label = 'Lik='+scenario)
|
110
|
plt.plot(x, y, '--', lw=1, label = 'Lik='+scenario)
|
116
|
plt.ylabel("Individuals (N)")
|
111
|
plt.ylabel("Individuals (N)")
|
117
|
plt.xlabel("Time (years)")
|
112
|
plt.xlabel("Time (years)")
|
|
|
|
|
119
|
plt.title(title)
|
114
|
plt.title(title)
|
120
|
#plt.gcf().set_size(1000, 500)
|
115
|
#plt.gcf().set_size(1000, 500)
|
121
|
plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
116
|
plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
122
|
- #plt.show()
|
|
|
123
|
|
117
|
|
124
|
if __name__ == "__main__":
|
118
|
if __name__ == "__main__":
|
125
|
-
|
|
|
|
|
119
|
+
|
126
|
if len(sys.argv) != 4:
|
120
|
if len(sys.argv) != 4:
|
127
|
print("Need 3 args: ThetaFolder MutationRate GenerationTime")
|
121
|
print("Need 3 args: ThetaFolder MutationRate GenerationTime")
|
128
|
exit(0)
|
122
|
exit(0)
|
129
|
-
|
|
|
|
|
123
|
+
|
130
|
folder_path = sys.argv[1]
|
124
|
folder_path = sys.argv[1]
|
131
|
mu = sys.argv[2]
|
125
|
mu = sys.argv[2]
|
132
|
tgen = sys.argv[3]
|
126
|
tgen = sys.argv[3]
|