import matplotlib.pyplot as plt import os import numpy as np import math import json def log_facto(k): """ Using the Stirling's approximation """ k = int(k) if k > 1e6: return k * np.log(k) - k + np.log(2*math.pi*k)/2 val = 0 for i in range(2, k+1): val += np.log(i) return val def parse_stwp_theta_file(stwp_theta_file, breaks, mu, tgen, relative_theta_scale = False): with open(stwp_theta_file, "r") as swp_file: # Read the first line line = swp_file.readline() L = float(line.split()[2]) rands = swp_file.readline() line = swp_file.readline() # skip empty lines before SFS while line == "\n": line = swp_file.readline() sfs = np.array(line.split()).astype(float) # Process lines until the end of the file while line: # check at each line if line.startswith("dim") : dim = int(line.split()[1]) if dim == breaks+1: likelihood = line.split()[5] groups = line.split()[6:6+dim] theta_site = line.split()[6+dim:6+dim+1+dim] elif dim < breaks+1: line = swp_file.readline() continue elif dim > breaks+1: break #return 0,0,0 # Read the next line line = swp_file.readline() #### END of parsing # quit this file if the number of dimensions is incorrect if dim < breaks+1: return 0,0,0,0,0,0 # get n, the last bin of the last group # revert the list of groups as the most recent times correspond # to the closest and last leafs of the coal. tree. groups = groups[::-1] theta_site = theta_site[::-1] # store thetas for later use grps = groups.copy() thetas = {} for i in range(len(groups)): grps[i] = grps[i].split(',') thetas[i] = [float(theta_site[i]), grps[i], likelihood] # initiate the dict of times t = {} # list of thetas theta_L = [] sum_t = 0 for group_nb, group in enumerate(groups): ###print(group_nb, group, theta_site[group_nb], len(theta_site)) # store all the thetas one by one, with one theta per group theta_L.append(float(theta_site[group_nb])) # if the group is of size 1 if len(group.split(',')) == 1: i = int(group) # if the group size is >1, take the first elem of the group # i is the first bin of each group, straight after a breakpoint else: i = int(group.split(",")[0]) j = int(group.split(",")[-1]) t[i] = 0 #t = if len(group.split(',')) == 1: k = i if relative_theta_scale: t[i] += ((theta_L[group_nb] ) / (k*(k-1))) else: t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu else: for k in range(j, i-1, -1 ): if relative_theta_scale: t[i] += ((theta_L[group_nb] ) / (k*(k-1))) else: t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu # we add the cumulative times at the end t[i] += sum_t sum_t = t[i] # build the y axis (sizes) y = [] for theta in theta_L: if relative_theta_scale: size = theta else: # with size N = theta/4mu size = theta / (4*mu) y.append(size) y.append(size) # build the time x axis x = [0] for time in range(0, len(t.values())-1): x.append(list(t.values())[time]) x.append(list(t.values())[time]) x.append(list(t.values())[len(t.values())-1]) return x,y,likelihood,thetas,sfs,L def plot_straight_x_y(x,y): x_1 = [x[0]] y_1 = [] for i in range(0, len(y)-1): x_1.append(x[i]) x_1.append(x[i]) y_1.append(y[i]) y_1.append(y[i]) y_1 = y_1+[y[-1],y[-1]] x_1.append(x[-1]) return x_1, y_1 def plot_all_epochs_thetafolder_old(folder_path, mu, tgen, title = "Title", theta_scale = True, ax = None, input = None, output = None): #scenari = {} cpt = 0 epochs = {} for file_name in os.listdir(folder_path): breaks = 0 cpt +=1 if os.path.isfile(os.path.join(folder_path, file_name)): x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks, tgen = tgen, mu = mu, relative_theta_scale = theta_scale) SFS_stored = sfs L_stored = L while not (x == 0 and y == 0): if breaks not in epochs.keys(): epochs[breaks] = {} epochs[breaks][likelihood] = x,y breaks += 1 x,y,likelihood,theta,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks, tgen = tgen, mu = mu, relative_theta_scale = theta_scale) if x == 0: # last break did not work, then breaks = breaks-1 breaks -= 1 print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n") print(cpt, "theta file(s) have been scanned.") my_dpi = 300 if ax is None: # intialize figure my_dpi = 300 fnt_size = 18 # plt.rcParams['font.size'] = fnt_size fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) else: fnt_size = 12 # plt.rcParams['font.size'] = fnt_size ax1 = ax[1][0,0] ax1.set_yscale('log') ax1.set_xscale('log') ax1.grid(True,which="both", linestyle='--', alpha = 0.3) brkpt_lik = [] top_plots = {} for epoch, scenari in epochs.items(): # sort starting by the smallest -log(Likelihood) best10_scenari = (sorted(list(scenari.keys())))[:10] greatest_likelihood = best10_scenari[0] # store the tuple breakpoints and likelihood for later plot brkpt_lik.append((epoch, greatest_likelihood)) x, y = scenari[greatest_likelihood] #without breakpoint if epoch == 0: # do something with the theta without bp and skip the plotting N0 = y[0] #continue for i in range(len(y)): # divide by N0 y[i] = y[i]/N0 x[i] = x[i]/N0 top_plots[greatest_likelihood] = x,y,epoch plots_likelihoods = list(top_plots.keys()) for i in range(len(plots_likelihoods)): plots_likelihoods[i] = float(plots_likelihoods[i]) best10_plots = sorted(plots_likelihoods)[:10] top_plot_lik = str(best10_plots[0]) plot_handles = [] # plt.rcParams['font.size'] = fnt_size p0, = ax1.plot(top_plots[top_plot_lik][0], top_plots[top_plot_lik][1], 'o', linestyle = "-", alpha=1, lw=2, label = str(top_plots[top_plot_lik][2])+' brks | Lik='+top_plot_lik) plot_handles.append(p0) for k, plot_Lk in enumerate(best10_plots[1:]): plot_Lk = str(plot_Lk) # plt.rcParams['font.size'] = fnt_size p, = ax1.plot(top_plots[plot_Lk][0], top_plots[plot_Lk][1], 'o', linestyle = "--", alpha=1/(k+1), lw=1.5, label = str(top_plots[plot_Lk][2])+' brks | Lik='+plot_Lk) plot_handles.append(p) if theta_scale: ax1.set_xlabel("Coal. time", fontsize=fnt_size) ax1.set_ylabel("Pop. size scaled by N0", fontsize=fnt_size) # recent_scale_lower_bound = 0.01 # recent_scale_upper_bound = 0.1 # ax1.axvline(x=recent_scale_lower_bound) # ax1.axvline(x=recent_scale_upper_bound) else: # years plt.set_xlabel("Time (years)", fontsize=fnt_size) plt.set_ylabel("Individuals (N)", fontsize=fnt_size) # plt.rcParams['font.size'] = fnt_size # print(fnt_size, "rcParam font.size=", plt.rcParams['font.size']) ax1.legend(handles = plot_handles, loc='best', fontsize = fnt_size*0.5) ax1.set_title(title) if ax is None: plt.savefig(title+'_b'+str(breaks)+'.pdf') # plot likelihood against nb of breakpoints # best possible likelihood from SFS # Segregating sites S = sum(SFS_stored) # Number of kept sites from which the SFS is computed L = L_stored # number of monomorphic sites S0 = L-S # print("SFS", SFS_stored) # print("S", S, "L", L, "S0=", S0) # compute Ln Ln = log_facto(S+S0) - log_facto(S0) + np.log(float(S0)/(S+S0)) * S0 for xi in range(0, len(SFS_stored)): p_i = SFS_stored[xi] / float(S+S0) Ln += np.log(p_i) * SFS_stored[xi] - log_facto(SFS_stored[xi]) # basic plot likelihood if ax is None: fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) # plt.rcParams['font.size'] = fnt_size else: #plt.rcParams['font.size'] = fnt_size ax2 = ax[0][0,1] ax2.plot(np.array(brkpt_lik)[:, 0], np.array(brkpt_lik)[:, 1].astype(float), 'o', linestyle = "dotted", lw=2) ax2.axhline(y=-Ln, linestyle = "-.", color = "red", label = "$-\log\mathcal{L}$ = "+str(round(-Ln, 2))) ax2.set_yscale('log') ax2.set_xlabel("# breakpoints", fontsize=fnt_size) ax2.set_ylabel("$-\log\mathcal{L}$", fontsize=fnt_size) ax2.legend(loc='best', fontsize = fnt_size*0.5) ax2.set_title(title+" Likelihood gain from # breakpoints") if ax is None: plt.savefig(title+'_Breakpts_Likelihood.pdf') # AIC if ax is None: fig, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) # plt.rcParams['font.size'] = '18' else: #plt.rcParams['font.size'] = fnt_size ax3 = ax[1][0,1] AIC = [] for brk in np.array(brkpt_lik)[:, 0]: brk = int(brk) AIC.append((2*brk+1)+2*np.array(brkpt_lik)[brk, 1].astype(float)) ax3.plot(np.array(brkpt_lik)[:, 0], AIC, 'o', linestyle = "dotted", lw=2) # AIC = 2*k - 2ln(L) ; where k is the number of parameters, here brks+1 AIC_ln = 2*(len(brkpt_lik)+1) - 2*Ln ax3.axhline(y=AIC_ln, linestyle = "-.", color = "red", label = "Min. AIC = "+str(round(AIC_ln, 2))) selected_brks_nb = AIC.index(min(AIC)) ax3.set_yscale('log') ax3.set_xlabel("# breakpoints", fontsize=fnt_size) ax3.set_ylabel("AIC") ax3.legend(loc='best', fontsize = fnt_size*0.5) ax3.set_title(title+" AIC") if ax is None: plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf') print("S", S) # return plots return ax[0], ax[1] def plot_all_epochs_thetafolder(full_dict, mu, tgen, title = "Title", theta_scale = True, ax = None, input = None, output = None): my_dpi = 300 if ax is None: # intialize figure my_dpi = 300 fnt_size = 18 # plt.rcParams['font.size'] = fnt_size fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) else: fnt_size = 12 # plt.rcParams['font.size'] = fnt_size ax1 = ax[1][0,0] ax1.set_yscale('log') ax1.set_xscale('log') ax1.grid(True,which="both", linestyle='--', alpha = 0.3) plot_handles = [] best_plot = full_dict['all_epochs']['best'] p0, = ax1.plot(best_plot[0], best_plot[1], 'o', linestyle = "-", alpha=1, lw=2, label = str(best_plot[2])+' brks | Lik='+best_plot[3]) plot_handles.append(p0) for k, plot_Lk in enumerate(full_dict['all_epochs']['plots']): plot_Lk = str(full_dict['all_epochs']['plots'][k][3]) # plt.rcParams['font.size'] = fnt_size p, = ax1.plot(full_dict['all_epochs']['plots'][k][0], full_dict['all_epochs']['plots'][k][1], 'o', linestyle = "--", alpha=1/(k+1), lw=1.5, label = str(full_dict['all_epochs']['plots'][k][2])+' brks | Lik='+plot_Lk) plot_handles.append(p) if theta_scale: ax1.set_xlabel("Coal. time", fontsize=fnt_size) ax1.set_ylabel("Pop. size scaled by N0", fontsize=fnt_size) # recent_scale_lower_bound = 0.01 # recent_scale_upper_bound = 0.1 # ax1.axvline(x=recent_scale_lower_bound) # ax1.axvline(x=recent_scale_upper_bound) else: # years plt.set_xlabel("Time (years)", fontsize=fnt_size) plt.set_ylabel("Individuals (N)", fontsize=fnt_size) # plt.rcParams['font.size'] = fnt_size # print(fnt_size, "rcParam font.size=", plt.rcParams['font.size']) ax1.legend(handles = plot_handles, loc='best', fontsize = fnt_size*0.5) ax1.set_title(title) if ax is None: plt.savefig(title+'_b'+str(breaks)+'.pdf') # plot likelihood against nb of breakpoints if ax is None: fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) # plt.rcParams['font.size'] = fnt_size else: #plt.rcParams['font.size'] = fnt_size ax2 = ax[0][0,1] ax2.plot(full_dict['Ln_Brks'][0], full_dict['Ln_Brks'][1], 'o', linestyle = "dotted", lw=2) ax2.axhline(y=full_dict['best_Ln'], linestyle = "-.", color = "red", label = "$-\log\mathcal{L}$ = "+str(round(full_dict['best_Ln'], 2))) ax2.set_yscale('log') ax2.set_xlabel("# breakpoints", fontsize=fnt_size) ax2.set_ylabel("$-\log\mathcal{L}$", fontsize=fnt_size) ax2.legend(loc='best', fontsize = fnt_size*0.5) ax2.set_title(title+" Likelihood gain from # breakpoints") if ax is None: plt.savefig(title+'_Breakpts_Likelihood.pdf') # AIC if ax is None: fig, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) # plt.rcParams['font.size'] = '18' else: #plt.rcParams['font.size'] = fnt_size ax3 = ax[1][0,1] AIC = full_dict['AIC_Brks'] ax3.plot(AIC[0], AIC[1], 'o', linestyle = "dotted", lw=2) ax3.axhline(y=full_dict['best_AIC'], linestyle = "-.", color = "red", label = "Min. AIC = "+str(round(full_dict['best_AIC'], 2))) ax3.set_yscale('log') ax3.set_xlabel("# breakpoints", fontsize=fnt_size) ax3.set_ylabel("AIC") ax3.legend(loc='best', fontsize = fnt_size*0.5) ax3.set_title(title+" AIC") if ax is None: plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf') # return plots return ax[0], ax[1] def save_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_scale = True, input = None, output = None): #scenari = {} cpt = 0 epochs = {} plots = {} # store ['best'], and [0] for epoch 0 etc... for file_name in os.listdir(folder_path): breaks = 0 cpt +=1 if os.path.isfile(os.path.join(folder_path, file_name)): x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks, tgen = tgen, mu = mu, relative_theta_scale = theta_scale) SFS_stored = sfs L_stored = L while not (x == 0 and y == 0): if breaks not in epochs.keys(): epochs[breaks] = {} epochs[breaks][likelihood] = x,y breaks += 1 x,y,likelihood,theta,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks, tgen = tgen, mu = mu, relative_theta_scale = theta_scale) if x == 0: # last break did not work, then breaks = breaks-1 breaks -= 1 print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n") print(cpt, "theta file(s) have been scanned.") brkpt_lik = [] top_plots = {} for epoch, scenari in epochs.items(): # sort starting by the smallest -log(Likelihood) best10_scenari = (sorted(list(scenari.keys())))[:10] greatest_likelihood = best10_scenari[0] # store the tuple breakpoints and likelihood for later plot brkpt_lik.append((epoch, greatest_likelihood)) x, y = scenari[greatest_likelihood] #without breakpoint if epoch == 0: # do something with the theta without bp and skip the plotting N0 = y[0] #continue for i in range(len(y)): # divide by N0 y[i] = y[i]/N0 x[i] = x[i]/N0 top_plots[greatest_likelihood] = x,y,epoch plots_likelihoods = list(top_plots.keys()) for i in range(len(plots_likelihoods)): plots_likelihoods[i] = float(plots_likelihoods[i]) best10_plots = sorted(plots_likelihoods)[:10] top_plot_lik = str(best10_plots[0]) # store x,y,brks,likelihood plots['best'] = (top_plots[top_plot_lik][0], top_plots[top_plot_lik][1], str(top_plots[top_plot_lik][2]), top_plot_lik) plots['plots'] = [] for k, plot_Lk in enumerate(best10_plots[1:]): plot_Lk = str(plot_Lk) plots['plots'].append([top_plots[plot_Lk][0], top_plots[plot_Lk][1], str(top_plots[plot_Lk][2]), plot_Lk]) # plot likelihood against nb of breakpoints # best possible likelihood from SFS # Segregating sites S = sum(SFS_stored) # Number of kept sites from which the SFS is computed L = L_stored # number of monomorphic sites S0 = L-S # print("SFS", SFS_stored) # print("S", S, "L", L, "S0=", S0) # compute Ln Ln = log_facto(S+S0) - log_facto(S0) + np.log(float(S0)/(S+S0)) * S0 for xi in range(0, len(SFS_stored)): p_i = SFS_stored[xi] / float(S+S0) Ln += np.log(p_i) * SFS_stored[xi] - log_facto(SFS_stored[xi]) # basic plot likelihood Ln_Brks = [list(np.array(brkpt_lik)[:, 0]), list(np.array(brkpt_lik)[:, 1].astype(float))] best_Ln = -Ln AIC = [] for brk in np.array(brkpt_lik)[:, 0]: brk = int(brk) AIC.append((2*brk+1)+2*np.array(brkpt_lik)[brk, 1].astype(float)) AIC_Brks = [list(np.array(brkpt_lik)[:, 0]), AIC] # AIC = 2*k - 2ln(L) ; where k is the number of parameters, here brks+1 AIC_ln = 2*(len(brkpt_lik)+1) - 2*Ln best_AIC = AIC_ln # to return : plots ; Ln_Brks ; AIC_Brks ; best_Ln ; best_AIC # 'plots' dict keys: 'best', {epochs}('0', '1',...) if input == None: saved_plots = {"all_epochs":plots, "Ln_Brks":Ln_Brks, "AIC_Brks":AIC_Brks, "best_Ln":best_Ln, "best_AIC":best_AIC} else: # if the dict has to be loaded from input with open(input, 'r') as json_file: saved_plots = json.load(json_file) saved_plots["all_epochs"] = plots saved_plots["Ln_Brks"] = Ln_Brks saved_plots["AIC_Brks"] = AIC_Brks saved_plots["best_Ln"] = best_Ln saved_plots["best_AIC"] = best_AIC if output == None: output = title+"_plotdata.json" with open(output, 'w') as json_file: json.dump(saved_plots, json_file) return saved_plots def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True, breaks_max = 10, input = None, output = None): """ Save theta values as is to do basic plots. """ cpt = 0 epochs = {} len_sfs = 0 for file_name in os.listdir(folder_path): cpt +=1 if os.path.isfile(os.path.join(folder_path, file_name)): for k in range(breaks_max): x,y,likelihood,thetas,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = k, tgen = tgen, mu = mu, relative_theta_scale = theta_scale) if thetas == 0: continue if len(thetas)-1 != k: continue if k not in epochs.keys(): epochs[k] = {} likelihood = str(eval(thetas[k][2])) epochs[k][likelihood] = thetas #epochs[k] = thetas print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(k)+"\n*******\n") print(cpt, "theta file(s) have been scanned.") plots = [] best_epochs = {} for epoch in epochs: likelihoods = [] for key in epochs[epoch].keys(): likelihoods.append(key) likelihoods.sort() minLogLn = str(likelihoods[0]) best_epochs[epoch] = epochs[epoch][minLogLn] for epoch, theta in best_epochs.items(): groups = np.array(list(theta.values()), dtype=object)[:, 1].tolist() x = [] y = [] thetas = np.array(list(theta.values()), dtype=object)[:, 0] for i,group in enumerate(groups): x += group[::-1] y += list(np.repeat(thetas[i], len(group))) if epoch == 0: N0 = y[0] # compute the proportion of information used at each bin of the SFS sum_theta_i = 0 for i in range(2, len(y)+2): sum_theta_i+=y[i-2] / (i-1) prop = [] for k in range(2, len(y)+2): prop.append(y[k-2] / (k - 1) / sum_theta_i) prop = prop[::-1] # normalise to N0 (N0 of epoch1) for i in range(len(y)): y[i] = y[i]/N0 # x_plot, y_plot = plot_straight_x_y(x, y) p = x, y # add plot to the list of all plots to superimpose plots.append(p) cumul = 0 prop_cumul = [] for val in prop: prop_cumul.append(val+cumul) cumul = val+cumul prop = prop_cumul lines_fig2 = [] for epoch, theta in best_epochs.items(): groups = np.array(list(theta.values()), dtype=object)[:, 1].tolist() x = [] y = [] thetas = np.array(list(theta.values()), dtype=object)[:, 0] for i,group in enumerate(groups): x += group[::-1] y += list(np.repeat(thetas[i], len(group))) if epoch == 0: N0 = y[0] for i in range(len(y)): y[i] = y[i]/N0 x_2 = [] T = 0 for i in range(len(x)): x[i] = int(x[i]) # compute the times as: theta_k / (k*(k-1)) for i in range(0, len(x)): T += y[i] / (x[i]*(x[i]-1)) x_2.append(T) # Save plotting (fig 2) x_2 = [0]+x_2 y = [y[0]]+y # x2_plot, y2_plot = plot_straight_x_y(x_2, y) p2 = x_2, y lines_fig2.append(p2) if input == None: saved_plots = {"raw_stairs":plots, "scaled_stairs":lines_fig2, "prop":prop} else: # if the dict has to be loaded from input with open(input, 'r') as json_file: saved_plots = json.load(json_file) saved_plots["raw_stairs"] = plots saved_plots["scaled_stairs"] = lines_fig2 saved_plots["prop"] = prop if output == None: output = title+"_plotdata.json" with open(output, 'w') as json_file: json.dump(saved_plots, json_file) return saved_plots def plot_scaled_theta(plot_lines, prop, title, ax = None, n_ticks = 10): # fig 2 & 3 if ax is None: my_dpi = 300 fnt_size = 18 fig2, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) fig3, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) else: # plt.rcParams['font.size'] = fnt_size fnt_size = 12 # place of plots on the grid ax2 = ax[1,0] ax3 = ax[1,1] lines_fig2 = [] lines_fig3 = [] #plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) for epoch, plot in enumerate(plot_lines): x,y=plot x2_plot, y2_plot = plot_straight_x_y(x,y) p2, = ax2.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(epoch)+' brks') lines_fig2.append(p2) # Plotting (fig 3) which is the same but log scale for x p3, = ax3.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(epoch)+' brks') lines_fig3.append(p3) ax2.set_xlabel("Relative scale", fontsize=fnt_size) ax2.set_ylabel("theta", fontsize=fnt_size) ax2.set_title(title, fontsize=fnt_size) ax2.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5) if ax is None: # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1) plt.savefig(title+'_plot2_'+str(len(plot_lines))+'.pdf') # close fig2 to save memory plt.close(fig2) ax3.set_xscale('log') ax3.set_yscale('log') ax3.set_xlabel("log Relative scale", fontsize=fnt_size) ax3.set_ylabel("theta", fontsize=fnt_size) ax3.set_title(title, fontsize=fnt_size) ax3.legend(handles=lines_fig3, loc='best', fontsize = fnt_size*0.5) if ax is None: # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1) plt.savefig(title+'_plot3_'+str(len(plot_lines))+'_log.pdf') # close fig3 to save memory plt.close(fig3) return ax def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10): # multiple fig if ax is None: # intialize figure 1 my_dpi = 300 fnt_size = 18 # plt.rcParams['font.size'] = fnt_size fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi) else: fnt_size = 12 # plt.rcParams['font.size'] = fnt_size ax1 = ax[0, 0] plt.subplots_adjust(wspace=0.3, hspace=0.3) plots = [] for epoch, plot in enumerate(plot_lines): x,y = plot x_plot, y_plot = plot_straight_x_y(x,y) p, = ax1.plot(x_plot, y_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(epoch)+' brks') # add plot to the list of all plots to superimpose plots.append(p) x_ticks = x # print(x_ticks) #print(prop, "\n", sum(prop)) #ax.legend(handles=[p0]+plots) ax1.set_xlabel("# bin & cumul. prop. of sites", fontsize=fnt_size) # Set the x-axis locator to reduce the number of ticks to 10 ax1.set_ylabel("theta", fontsize=fnt_size) ax1.set_title(title, fontsize=fnt_size) ax1.legend(handles=plots, loc='best', fontsize = fnt_size*0.5) ax1.set_xticks(x_ticks) step = len(x_ticks)//(n_ticks-1) values = x_ticks[::step] new_prop = [] for val in values: new_prop.append(prop[int(val)-2]) new_prop = new_prop[::-1] ax1.set_xticks(values) ax1.set_xticklabels([f'{values[k]}\n{val:.2f}' for k, val in enumerate(new_prop)], fontsize = fnt_size*0.8) if ax is None: # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1) plt.savefig(title+'_raw'+str(len(plot_lines))+'.pdf') plt.close(fig) # return plots return ax def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale = True): my_dpi = 300 # # Add some extra space for the second axis at the bottom # #plt.rcParams['font.size'] = 18 # fig, axs = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi) # #plt.rcParams['font.size'] = 12 # ax = plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = axs) # ax = plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = axs) # # Adjust layout to prevent clipping of titles # # # Save the entire grid as a single figure # plt.savefig(title+'_combined.pdf') # plt.clf() # # # second call for individual plots # # plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = None) # # plot_test_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, ax = None) # # plt.clf() save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = breaks, output = title+"_plotdata.json") save_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, input = title+"_plotdata.json", output = title+"_plotdata.json") with open(title+"_plotdata.json", 'r') as json_file: loaded_data = json.load(json_file) # plot page 1 of summary fig1, ax1 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi) # fig1.tight_layout() # Adjust absolute space between the top and bottom rows fig1.subplots_adjust(hspace=0.35) # Adjust this value based on your requirement # plot page 2 of summary fig2, ax2 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi) # fig2.tight_layout() ax1 = plot_raw_stairs(plot_lines = loaded_data['raw_stairs'], prop = loaded_data['prop'], title = title, ax = ax1) ax1 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], prop = loaded_data['prop'], title = title, ax = ax1) ax1, ax2 = plot_all_epochs_thetafolder(loaded_data, mu, tgen, title, theta_scale, ax = [ax1, ax2]) fig1.savefig(title+'_combined_p1.pdf') fig2.savefig(title+'_combined_p2.pdf') plot_raw_stairs(plot_lines = loaded_data['raw_stairs'], prop = loaded_data['prop'], title = title, ax = None) plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], prop = loaded_data['prop'], title = title, ax = None) plt.close(fig1) plt.close(fig2) if __name__ == "__main__": if len(sys.argv) != 4: print("Need 3 args: ThetaFolder MutationRate GenerationTime") exit(0) folder_path = sys.argv[1] mu = sys.argv[2] tgen = sys.argv[3] plot_all_epochs_thetafolder(folder_path, mu, tgen)