123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790 |
- import matplotlib.pyplot as plt
- import os
- import numpy as np
- import math
- import json
-
- def log_facto(k):
- """
- Using the Stirling's approximation
- """
- k = int(k)
- if k > 1e6:
- return k * np.log(k) - k + np.log(2*math.pi*k)/2
- val = 0
- for i in range(2, k+1):
- val += np.log(i)
- return val
-
- def parse_stwp_theta_file(stwp_theta_file, breaks, mu, tgen, relative_theta_scale = False):
- with open(stwp_theta_file, "r") as swp_file:
- # Read the first line
- line = swp_file.readline()
- L = float(line.split()[2])
- rands = swp_file.readline()
- line = swp_file.readline()
- # skip empty lines before SFS
- while line == "\n":
- line = swp_file.readline()
- sfs = np.array(line.split()).astype(float)
- # Process lines until the end of the file
- while line:
- # check at each line
- if line.startswith("dim") :
- dim = int(line.split()[1])
- if dim == breaks+1:
- likelihood = line.split()[5]
- groups = line.split()[6:6+dim]
- theta_site = line.split()[6+dim:6+dim+1+dim]
- elif dim < breaks+1:
- line = swp_file.readline()
- continue
- elif dim > breaks+1:
- break
- #return 0,0,0
- # Read the next line
- line = swp_file.readline()
- #### END of parsing
- # quit this file if the number of dimensions is incorrect
- if dim < breaks+1:
- return 0,0,0,0,0,0
- # get n, the last bin of the last group
- # revert the list of groups as the most recent times correspond
- # to the closest and last leafs of the coal. tree.
- groups = groups[::-1]
- theta_site = theta_site[::-1]
- # store thetas for later use
- grps = groups.copy()
- thetas = {}
- for i in range(len(groups)):
- grps[i] = grps[i].split(',')
- thetas[i] = [float(theta_site[i]), grps[i], likelihood]
- # initiate the dict of times
- t = {}
- # list of thetas
- theta_L = []
- sum_t = 0
- for group_nb, group in enumerate(groups):
- ###print(group_nb, group, theta_site[group_nb], len(theta_site))
- # store all the thetas one by one, with one theta per group
- theta_L.append(float(theta_site[group_nb]))
- # if the group is of size 1
- if len(group.split(',')) == 1:
- i = int(group)
- # if the group size is >1, take the first elem of the group
- # i is the first bin of each group, straight after a breakpoint
- else:
- i = int(group.split(",")[0])
- j = int(group.split(",")[-1])
- t[i] = 0
- #t =
- if len(group.split(',')) == 1:
- k = i
- if relative_theta_scale:
- t[i] += ((theta_L[group_nb] ) / (k*(k-1)))
- else:
- t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
- else:
- for k in range(j, i-1, -1 ):
- if relative_theta_scale:
- t[i] += ((theta_L[group_nb] ) / (k*(k-1)))
- else:
- t[i] += ((theta_L[group_nb] ) / (k*(k-1)) * tgen) / mu
- # we add the cumulative times at the end
- t[i] += sum_t
- sum_t = t[i]
- # build the y axis (sizes)
- y = []
- for theta in theta_L:
- if relative_theta_scale:
- size = theta
- else:
- # with size N = theta/4mu
- size = theta / (4*mu)
- y.append(size)
- y.append(size)
- # build the time x axis
- x = [0]
- for time in range(0, len(t.values())-1):
- x.append(list(t.values())[time])
- x.append(list(t.values())[time])
- x.append(list(t.values())[len(t.values())-1])
-
- return x,y,likelihood,thetas,sfs,L
-
- def plot_straight_x_y(x,y):
- x_1 = [x[0]]
- y_1 = []
- for i in range(0, len(y)-1):
- x_1.append(x[i])
- x_1.append(x[i])
- y_1.append(y[i])
- y_1.append(y[i])
- y_1 = y_1+[y[-1],y[-1]]
- x_1.append(x[-1])
- return x_1, y_1
-
- def plot_all_epochs_thetafolder(full_dict, mu, tgen, title = "Title",
- theta_scale = True, ax = None, input = None, output = None):
- my_dpi = 500
- L = full_dict["L"]
- if ax is None:
- # intialize figure
- #my_dpi = 300
- fnt_size = 18
- # plt.rcParams['font.size'] = fnt_size
- fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
- else:
- fnt_size = 12
- # plt.rcParams['font.size'] = fnt_size
- ax1 = ax[1][0,0]
- ax1.set_yscale('log')
- ax1.set_xscale('log')
- plot_handles = []
- best_plot = full_dict['all_epochs']['best']
- p0, = ax1.plot(best_plot[0], best_plot[1], linestyle = "-",
- alpha=1, lw=2, label = str(best_plot[2])+' brks | Lik='+best_plot[3])
- plot_handles.append(p0)
- #ax1.grid(True,which="both", linestyle='--', alpha = 0.3)
- for k, plot_Lk in enumerate(full_dict['all_epochs']['plots']):
- plot_Lk = str(full_dict['all_epochs']['plots'][k][3])
- # plt.rcParams['font.size'] = fnt_size
- p, = ax1.plot(full_dict['all_epochs']['plots'][k][0], full_dict['all_epochs']['plots'][k][1], linestyle = "-",
- alpha=1/(k+1), lw=1.5, label = str(full_dict['all_epochs']['plots'][k][2])+' brks | Lik='+plot_Lk)
- plot_handles.append(p)
- if theta_scale:
- ax1.set_xlabel("Coal. time", fontsize=fnt_size)
- ax1.set_ylabel("Pop. size scaled by N0", fontsize=fnt_size)
- # recent_scale_lower_bound = 0.01
- # recent_scale_upper_bound = 0.1
- # ax1.axvline(x=recent_scale_lower_bound)
- # ax1.axvline(x=recent_scale_upper_bound)
- else:
- # years
- if ax is not None:
- plt.set_xlabel("Time (years)", fontsize=fnt_size)
- plt.set_ylabel("Effective pop. size (Ne)", fontsize=fnt_size)
- else:
- plt.xlabel("Time (years)", fontsize=fnt_size)
- plt.ylabel("Effective pop. size (Ne)", fontsize=fnt_size)
- # x_ticks = ax1.get_xticks()
- # ax1.set_xticklabels([f'{k:.0e}\n{k/(mu):.0e}\n{k/(mu)*tgen:.0e}' for k in x_ticks], fontsize = fnt_size*0.5)
- # ax1.set_xticklabels([f'{k}\n{k/(mu)}\n{k/(mu)*tgen}' for k in x_ticks], fontsize = fnt_size*0.8)
- # plt.rcParams['font.size'] = fnt_size
- # print(fnt_size, "rcParam font.size=", plt.rcParams['font.size'])
- ax1.legend(handles = plot_handles, loc='best', fontsize = fnt_size*0.5)
- ax1.set_title(title)
- breaks = len(full_dict['all_epochs']['plots'])
- if ax is None:
- plt.savefig(title+'_'+str(breaks+1)+'_epochs.pdf')
- # plot likelihood against nb of breakpoints
- if ax is None:
- fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
- # plt.rcParams['font.size'] = fnt_size
- else:
- #plt.rcParams['font.size'] = fnt_size
- ax2 = ax[0][0,1]
- # Retrieve the default color cycle from rcParams
- default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
- # Create an array of colors from the default color cycle
- colors = [default_colors[i % len(default_colors)] for i in range(len(full_dict['Ln_Brks'][0]))]
- ax2.plot(full_dict['Ln_Brks'][0], full_dict['Ln_Brks'][1], "--", lw=1, color="black", zorder=1)
- ax2.scatter(full_dict['Ln_Brks'][0], full_dict['Ln_Brks'][1], s=50, c=colors, marker='o', zorder=2)
- ax2.axhline(y=full_dict['best_Ln'], linestyle = "-.", color = "red", label = "$-\log\mathcal{L}$ = "+str(round(full_dict['best_Ln'], 2)))
- ax2.set_yscale('log')
- ax2.set_xlabel("# breakpoints", fontsize=fnt_size)
- ax2.set_ylabel("$-\log\mathcal{L}$", fontsize=fnt_size)
- ax2.legend(loc='best', fontsize = fnt_size*0.5)
- ax2.set_title(title+" Likelihood gain from # breakpoints")
- if ax is None:
- plt.savefig(title+'_Breakpts_Likelihood.pdf')
- # AIC
- if ax is None:
- fig, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
- # plt.rcParams['font.size'] = '18'
- else:
- #plt.rcParams['font.size'] = fnt_size
- ax3 = ax[1][0,1]
- AIC = full_dict['AIC_Brks']
- # ax3.plot(AIC[0], AIC[1], 'o', linestyle = "dotted", lw=2)
- ax3.plot(AIC[0], AIC[1], "--", lw=1, color="black", zorder=1)
- ax3.scatter(AIC[0], AIC[1], s=50, c=colors, marker='o', zorder=2)
- ax3.axhline(y=full_dict['best_AIC'], linestyle = "-.", color = "red",
- label = "Min. AIC = "+str(round(full_dict['best_AIC'], 2)))
- ax3.set_yscale('log')
- ax3.set_xlabel("# breakpoints", fontsize=fnt_size)
- ax3.set_ylabel("AIC")
- ax3.legend(loc='best', fontsize = fnt_size*0.5)
- ax3.set_title(title+" AIC")
- if ax is None:
- plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf')
- else:
- # return plots
- return ax[0], ax[1]
-
- def save_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_scale = True, input = None, output = None):
- #scenari = {}
- cpt = 0
- epochs = {}
- plots = {}
- # store ['best'], and [0] for epoch 0 etc...
- for file_name in os.listdir(folder_path):
- breaks = 0
- cpt +=1
- if os.path.isfile(os.path.join(folder_path, file_name)):
- x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
- tgen = tgen,
- mu = mu, relative_theta_scale = theta_scale)
- SFS_stored = sfs
- L_stored = L
- while not (x == 0 and y == 0):
- if breaks not in epochs.keys():
- epochs[breaks] = {}
- epochs[breaks][likelihood] = x,y
- breaks += 1
- x,y,likelihood,theta,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
- tgen = tgen,
- mu = mu, relative_theta_scale = theta_scale)
- if x == 0:
- # last break did not work, then breaks = breaks-1
- breaks -= 1
- print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
- print(cpt, "theta file(s) have been scanned.")
- brkpt_lik = []
- top_plots = {}
- best_scenario_for_epoch = {}
- for epoch, scenari in epochs.items():
- # sort starting by the smallest -log(Likelihood)
- best10_scenari = (sorted(list(scenari.keys())))[:10]
- greatest_likelihood = best10_scenari[0]
- # store the tuple breakpoints and likelihood for later plot
- brkpt_lik.append((epoch, greatest_likelihood))
- x, y = scenari[greatest_likelihood]
- #without breakpoint
- if epoch == 0:
- # do something with the theta without bp and skip the plotting
- N0 = y[0]
- #continue
- if theta_scale:
- for i in range(len(y)):
- # divide by N0
- y[i] = y[i]/N0
- x[i] = x[i]/N0
- top_plots[greatest_likelihood] = x,y,epoch
- best_scenario_for_epoch[epoch] = x,y,greatest_likelihood
- plots_likelihoods = list(top_plots.keys())
- for i in range(len(plots_likelihoods)):
- plots_likelihoods[i] = float(plots_likelihoods[i])
- best10_plots = sorted(plots_likelihoods)[:10]
- top_plot_lik = str(best10_plots[0])
- # store x,y,brks,likelihood
- plots['best'] = (top_plots[top_plot_lik][0], top_plots[top_plot_lik][1], str(top_plots[top_plot_lik][2]), top_plot_lik)
- plots['plots'] = []
- for k, epoch in enumerate(best_scenario_for_epoch.keys()):
- plot_Lk = str(best_scenario_for_epoch[epoch][2])
- x,y = best_scenario_for_epoch[epoch][0], best_scenario_for_epoch[epoch][1]
- plots['plots'].append([x, y, str(epoch), plot_Lk])
- plots['plots'] = sorted(plots['plots'], key=lambda x: float(x[3]))
- plots['plots'] = plots['plots'][1:]
- # Previous version. Was this correct????
- # for k, plot_Lk in enumerate(best10_plots[1:]):
- # plot_Lk = str(plot_Lk)
- # plots['plots'].append([top_plots[plot_Lk][0], top_plots[plot_Lk][1], str(top_plots[plot_Lk][2]), plot_Lk])
- # plot likelihood against nb of breakpoints
- # best possible likelihood from SFS
- # Segregating sites
- S = sum(SFS_stored)
- # Number of kept sites from which the SFS is computed
- L = L_stored
- # number of monomorphic sites
- S0 = L-S
- # print("SFS", SFS_stored)
- # print("S", S, "L", L, "S0=", S0)
- # compute Ln
- Ln = log_facto(S+S0) - log_facto(S0) + np.log(float(S0)/(S+S0)) * S0
- for xi in range(0, len(SFS_stored)):
- p_i = SFS_stored[xi] / float(S+S0)
- Ln += np.log(p_i) * SFS_stored[xi] - log_facto(SFS_stored[xi])
- # basic plot likelihood
- Ln_Brks = [list(np.array(brkpt_lik)[:, 0]), list(np.array(brkpt_lik)[:, 1].astype(float))]
- best_Ln = -Ln
- AIC = []
- for brk in np.array(brkpt_lik)[:, 0]:
- brk = int(brk)
- AIC.append((2*brk+1)+2*np.array(brkpt_lik)[brk, 1].astype(float))
- AIC_Brks = [list(np.array(brkpt_lik)[:, 0]), AIC]
- # AIC = 2*k - 2ln(L) ; where k is the number of parameters, here brks+1
- AIC_ln = 2*(len(brkpt_lik)+1) - 2*Ln
- best_AIC = AIC_ln
- selected_brks_nb = AIC.index(min(AIC))
- # to return : plots ; Ln_Brks ; AIC_Brks ; best_Ln ; best_AIC
- # 'plots' dict keys: 'best', {epochs}('0', '1',...)
- if input == None:
- saved_plots = {"S":S, "S0":S0, "L":L, "mu":mu, "tgen":tgen,
- "all_epochs":plots, "Ln_Brks":Ln_Brks,
- "AIC_Brks":AIC_Brks, "best_Ln":best_Ln,
- "best_AIC":best_AIC, "best_epoch_by_AIC":selected_brks_nb}
- else:
- # if the dict has to be loaded from input
- with open(input, 'r') as json_file:
- saved_plots = json.load(json_file)
- saved_plots["S"] = S
- saved_plots["S0"] = S0
- saved_plots["L"] = L
- saved_plots["mu"] = mu
- saved_plots["tgen"] = tgen
- saved_plots["all_epochs"] = plots
- saved_plots["Ln_Brks"] = Ln_Brks
- saved_plots["AIC_Brks"] = AIC_Brks
- saved_plots["best_Ln"] = best_Ln
- saved_plots["best_AIC"] = best_AIC
- saved_plots["best_epoch_by_AIC"] = selected_brks_nb
- if output == None:
- output = title+"_plotdata.json"
- with open(output, 'w') as json_file:
- json.dump(saved_plots, json_file)
- return saved_plots
-
- def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
- breaks_max = 10, input = None, output = None):
- """
- Save theta values as is to do basic plots.
- """
- cpt = 0
- epochs = {}
- len_sfs = 0
- for file_name in os.listdir(folder_path):
- cpt +=1
- if os.path.isfile(os.path.join(folder_path, file_name)):
- for k in range(breaks_max+1):
- x,y,likelihood,thetas,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = k,
- tgen = tgen,
- mu = mu, relative_theta_scale = theta_scale)
- if thetas == 0:
- continue
- if len(thetas)-1 != k:
- continue
- if k not in epochs.keys():
- epochs[k] = {}
- likelihood = str(eval(thetas[k][2]))
- epochs[k][likelihood] = thetas
- #epochs[k] = thetas
- print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(k)+"\n*******\n")
- print(cpt, "theta file(s) have been scanned.")
- plots = []
- best_epochs = {}
- for epoch in epochs:
- likelihoods = []
- for key in epochs[epoch].keys():
- likelihoods.append(key)
- likelihoods.sort()
- minLogLn = str(likelihoods[0])
- best_epochs[epoch] = epochs[epoch][minLogLn]
- for epoch, theta in best_epochs.items():
- groups = np.array(list(theta.values()), dtype=object)[:, 1].tolist()
- x = []
- y = []
- thetas = np.array(list(theta.values()), dtype=object)[:, 0]
- for i,group in enumerate(groups):
- x += group[::-1]
- y += list(np.repeat(thetas[i], len(group)))
- if epoch == 0:
- N0 = y[0]
- # compute the proportion of information used at each bin of the SFS
- sum_theta_i = 0
- for i in range(2, len(y)+2):
- sum_theta_i+=y[i-2] / (i-1)
- prop = []
- for k in range(2, len(y)+2):
- prop.append(y[k-2] / (k - 1) / sum_theta_i)
- prop = prop[::-1]
- if theta_scale :
- # normalise to N0 (N0 of epoch1)
- for i in range(len(y)):
- y[i] = y[i]/N0
- # x_plot, y_plot = plot_straight_x_y(x, y)
- p = x, y
- # add plot to the list of all plots to superimpose
- plots.append(p)
- cumul = 0
- prop_cumul = []
- for val in prop:
- prop_cumul.append(val+cumul)
- cumul = val+cumul
- prop = prop_cumul
-
- lines_fig2 = []
- for epoch, theta in best_epochs.items():
- groups = np.array(list(theta.values()), dtype=object)[:, 1].tolist()
- x = []
- y = []
- thetas = np.array(list(theta.values()), dtype=object)[:, 0]
- for i,group in enumerate(groups):
- x += group[::-1]
- y += list(np.repeat(thetas[i], len(group)))
- if epoch == 0:
- N0 = y[0]
- if theta_scale :
- for i in range(len(y)):
- y[i] = y[i]/N0
- x_2 = []
- T = 0
- for i in range(len(x)):
- x[i] = int(x[i])
- # compute the times as: theta_k / (k*(k-1))
- for i in range(0, len(x)):
- T += y[i] / (x[i]*(x[i]-1))
- x_2.append(T)
- # Save plotting (fig 2)
- x_2 = [0]+x_2
- y = [y[0]]+y
- # x2_plot, y2_plot = plot_straight_x_y(x_2, y)
- p2 = x_2, y
- lines_fig2.append(p2)
- if input == None:
- saved_plots = {"raw_stairs":plots, "scaled_stairs":lines_fig2,
- "prop":prop}
- else:
- # if the dict has to be loaded from input
- with open(input, 'r') as json_file:
- saved_plots = json.load(json_file)
- saved_plots["raw_stairs"] = plots
- saved_plots["scaled_stairs"] = lines_fig2
- saved_plots["prop"] = prop
- if output == None:
- output = title+"_plotdata.json"
- with open(output, 'w') as json_file:
- json.dump(saved_plots, json_file)
- return saved_plots
-
- def plot_scaled_theta(plot_lines, prop, title, mu, tgen, swp2_lines = None, ax = None, n_ticks = 10, subset = None, theta_scale = False):
- recent_limit_years = 500
- # recent limit in coal. time
- recent_limit = recent_limit_years/tgen*mu
- # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
- nb_epochs = len(plot_lines)
- # fig 2 & 3
- if ax is None:
- my_dpi = 500
- fnt_size = 18
- fig2, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
- fig3, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
- else:
- # plt.rcParams['font.size'] = fnt_size
- fnt_size = 12
- # place of plots on the grid
- ax2 = ax[1,0]
- ax3 = ax[1,1]
- lines_fig2 = []
- lines_fig3 = []
- #plt.figure(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
- if swp2_lines:
- for k in range(len(swp2_lines[0])):
- swp2_lines[0][k] = swp2_lines[0][k]/tgen*mu
- for k in range(len(swp2_lines[1])):
- swp2_lines[1][k] = swp2_lines[1][k]*4*mu
- # x2_plot, y2_plot = plot_straight_x_y(swp2_lines[0],swp2_lines[1])
- x2_plot, y2_plot = swp2_lines[0], swp2_lines[1]
- p2, = ax2.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2', color="black")
- lines_fig2.append(p2)
- # Plotting (fig 3) which is the same but log scale for x
- p3, = ax3.plot(x2_plot, y2_plot, linestyle="-", alpha=0.75, lw=2, label = 'swp2', color="black")
- lines_fig3.append(p3)
- min_x = 1
- min_y = 1
- max_x = 0
- max_y = 0
- for breaks, plot in enumerate(plot_lines):
- x,y=plot
- x2_plot, y2_plot = plot_straight_x_y(x,y)
- if subset is not None:
- if breaks in subset:
- masking_alpha = 0.75
- autoscale = True
- min_x = min(min_x, min(x2_plot))
- min_y = min(min_y, min(y2_plot))
- max_x = max(max_x, max(x2_plot))
- max_y = max(max_y, max(y2_plot))
-
- # skip the base 0 points x_plot[0:3]
- t_max_below_limit = 0
- t_min_below_limit = 1
- recent_change = False
- for t in x[1:]:
- if t <= recent_limit:
- recent_change = True
- t_max_below_limit = max(t_max_below_limit, t)
- t_min_below_limit = min(t_min_below_limit, t)
- Ne_max_below_limit = y[x.index(t_max_below_limit)]
- Ne_min_below_limit = y[x.index(t_min_below_limit)]
- if recent_change:
- print(f"\n{breaks} breaks ; This is below the recent limit of {recent_limit_years} years:\n",
- f"t_min (most recent time point under the limit) : {t_min_below_limit/mu*tgen:.1f} t_max (most ancient time point under the limit) : {t_max_below_limit/mu*tgen:.1f}",
- f"\nNe_min (effective size at t_min) : {Ne_min_below_limit/(4*mu):.1f} Ne_max (effective size at t_max) : {Ne_max_below_limit/(4*mu):.1f}",
- f"\nNe_min/Ne_max = {(Ne_min_below_limit/(4*mu)) / (Ne_max_below_limit/(4*mu)):.1f}",
- f"\nEvolution: {((Ne_min_below_limit/(4*mu)) - (Ne_max_below_limit/(4*mu)))/((Ne_max_below_limit/(4*mu)))*100:.1f}%")
- else:
- print(f"Recent event under {recent_limit_years} years: NA")
- # need to compute the last change and when it occured
- tmin = x[1]
- tmin_plus_1 = x[2]
- Ne_min = y[1]
- Ne_min_plus_1 = y[2]
- print(f"Last was {tmin/mu*tgen:.1f} years ago. And was of {((Ne_min/(4*mu)) - (Ne_min_plus_1/(4*mu)))/(Ne_min_plus_1/(4*mu))*100:.1f}%")
-
- else:
- masking_alpha = 0
- autoscale = False
- ax2.set_autoscale_on(autoscale)
- ax3.set_autoscale_on(autoscale)
-
- p2, = ax2.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=masking_alpha, lw=2, label = str(breaks)+' brks')
- # Plotting (fig 3) which is the same but log scale for x
- p3, = ax3.plot(x2_plot, y2_plot, 'o', linestyle="-", alpha=masking_alpha, lw=2, label = str(breaks)+' brks')
- if subset is not None and breaks in subset:
- # store for legend
- lines_fig2.append(p2)
- lines_fig3.append(p3)
- # put the vertical line of the "recent" time limit
- ax3.axvline(x=recent_limit, linestyle="--")
- if theta_scale:
- xlabel = "Theta scaled by N0"
- ylabel = "Theta scaled by N0"
- else:
- xlabel = "time"
- ylabel = "Effective pop. size (Ne)"
- if ax is None:
- # if not ax, then use the plt syntax, not ax...
- plt.xlabel(xlabel, fontsize=fnt_size)
- plt.ylabel(ylabel, fontsize=fnt_size)
- #plt.xlim(left=0)
- #xlim_val = plt.gca().get_xlim()
- #x_ticks = list(plt.xticks())[0]
- plt.xlim(min(min_x,min(swp2_lines[0])), max(max(swp2_lines[0]), max_x))
- x_ticks = list(plt.gca().get_xticks())
- plt.gca().set_xticks(x_ticks)
- # plt.xticks(x_ticks)
- # plt.gca().set_xlim(xlim_val)
- plt.gca().set_xticklabels([f'{k:.0e}\n{k/(mu):.0e}\n{k/(mu)*tgen:.0e}' for k in x_ticks], fontsize = fnt_size*0.5)
- # rescale y to effective pop size
- # ylim_val = plt.gca().get_ylim()
- plt.ylim(min(min_y,min(swp2_lines[1])), max(max_y+(max_y*0.05), max(swp2_lines[1])+(max(swp2_lines[1])*0.05)))
- y_ticks = list(plt.yticks())[0]
- plt.gca().set_yticks(y_ticks)
- # plt.gca().set_ylim(ylim_val)
- plt.yticks(y_ticks)
- plt.gca().set_yticklabels([f'{k/(4*mu):.0e}' for k in y_ticks], fontsize = fnt_size*0.5)
- plt.title(title, fontsize=fnt_size)
- plt.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
- plt.text(-0.13, -0.135, 'Coal. time\nGen. time\nYears', ha='left', va='bottom', transform=ax3.transAxes)
- plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
- plt.savefig(title+'_plotB_'+str(nb_epochs)+'_epochs.pdf')
- # close fig2 to save memory
- plt.close(fig2)
- else:
- # when ax subplotting is used
- ax2.set_xlabel(xlabel, fontsize=fnt_size)
- ax2.set_ylabel(ylabel, fontsize=fnt_size)
- ax2.set_title(title, fontsize=fnt_size)
- ax2.legend(handles=lines_fig2, loc='best', fontsize = fnt_size*0.5)
- ax3.set_xlabel(xlabel, fontsize=fnt_size)
- ax3.set_ylabel(ylabel, fontsize=fnt_size)
- ax3.set_title(title, fontsize=fnt_size)
- ax3.legend(handles=lines_fig3, loc='best', fontsize = fnt_size*0.5)
- ax3.set_xscale('log')
- ax3.set_yscale('log')
- # Scale the x-axis
- x_ticks = list(ax3.get_xticks())
- ax3.set_xticks(x_ticks)
- ax3.set_xlim(min(min(x_ticks), min(swp2_lines[0])), max(max_x, max(swp2_lines[0])))
- ax3.set_xticklabels([f'{k:.0e}\n{k/(mu):.0e}\n{k/(mu)*tgen:.0e}' for k in x_ticks], fontsize = fnt_size*0.5)
- # rescale y to effective pop size
- y_ticks = list(ax3.get_yticks())
- ax3.set_yticks(y_ticks)
- ax3.set_ylim(min(min(y_ticks), min(swp2_lines[1])), max(max_y+(max_y*0.5), max(swp2_lines[1])+(max(swp2_lines[1])*0.5)))
- ax3.set_yticklabels([f'{k/(4*mu):.0e}' for k in y_ticks], fontsize = fnt_size*0.5)
- plt.text(-0.13, -0.135, 'Coal. time\nGen. time\nYears', ha='left', va='bottom', transform=ax3.transAxes)
- plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
- if ax is None:
- # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
- plt.savefig(title+'_plotC_'+str(nb_epochs)+'_epochs_log.pdf')
- # close fig3 to save memory
- plt.close(fig3)
- return ax
-
- def plot_raw_stairs(plot_lines, prop, title, ax = None, n_ticks = 10, rescale = False, subset = None, max_breaks = None):
- if max_breaks:
- nb_breaks = max_breaks
- else:
- nb_breaks = len(plot_lines)+1
- # multiple fig
- if ax is None:
- # intialize figure 1
- my_dpi = 500
- fnt_size = 18
- # plt.rcParams['font.size'] = fnt_size
- fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
- plt.subplots_adjust(bottom=0.2) # Adjust the value as needed
- else:
- fnt_size = 12
- # plt.rcParams['font.size'] = fnt_size
- ax1 = ax[0, 0]
- plt.subplots_adjust(wspace=0.3, hspace=0.3)
- plots = []
- for breaks, plot in enumerate(plot_lines):
- if max_breaks and breaks > max_breaks:
- # stop plotting if it exceeds the limit
- continue
- x,y = plot
- x_plot, y_plot = plot_straight_x_y(x,y)
- p, = ax1.plot(x_plot, y_plot, 'o', linestyle="-", alpha=0.75, lw=2, label = str(breaks)+' brks')
-
- # add plot to the list of all plots to superimpose
- plots.append(p)
- x_ticks = x
- # print(x_ticks)
- #print(prop, "\n", sum(prop))
- #ax.legend(handles=[p0]+plots)
- ax1.set_xlabel("# bin & cumul. prop. of sites", fontsize=fnt_size)
- # Set the x-axis locator to reduce the number of ticks to 10
- ax1.set_ylabel(r'$\theta_k$', fontsize=fnt_size, rotation = 90)
- ax1.set_title(title, fontsize=fnt_size)
- ax1.legend(handles=plots, loc='best', fontsize = fnt_size*0.5)
- ax1.set_xticks(x_ticks)
- step = len(x_ticks)//(n_ticks-1)
- values = x_ticks[::step]
- new_prop = []
- for val in values:
- new_prop.append(prop[int(val)-2])
- new_prop = new_prop[::-1]
- ax1.set_xticks(values)
- ax1.set_xticklabels([f'{values[k]}\n{val:.2f}' for k, val in enumerate(new_prop)], fontsize = fnt_size*0.8)
- if ax is None:
- # nb of plot_lines represent the number of epochs stored (len(plot_lines) = #breaks+1)
- plt.savefig(title+'_raw_'+str(nb_breaks)+'_breaks.pdf')
- plt.close(fig)
- # return plots
- return ax
-
- def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale = False, selected_breaks = []):
- my_dpi = 300
- saved_plots_dict = save_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, output = title+"_plotdata.json")
- nb_of_epochs = len(saved_plots_dict["all_epochs"]["plots"])
- best_epoch = saved_plots_dict["best_epoch_by_AIC"]
- print("Best epoch based on AIC =", best_epoch)
- save_k_theta(folder_path, mu, tgen, title, theta_scale, breaks_max = nb_of_epochs, input = title+"_plotdata.json", output = title+"_plotdata.json")
-
- with open(title+"_plotdata.json", 'r') as json_file:
- loaded_data = json.load(json_file)
-
- # START OF COMBINED PLOT CODE
-
- # # plot page 1 of summary
- # fig1, ax1 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
- # # fig1.tight_layout()
- # # Adjust absolute space between the top and bottom rows
- # fig1.subplots_adjust(hspace=0.35) # Adjust this value based on your requirement
- # # plot page 2 of summary
- # fig2, ax2 = plt.subplots(2, 2, figsize=(5000/my_dpi, 2970/my_dpi), dpi=my_dpi)
- # # fig2.tight_layout()
- # ax1 = plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
- # prop = loaded_data['prop'], title = title, ax = ax1)
- # ax1 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
- # prop = loaded_data['prop'], title = title, ax = ax1, subset=[loaded_data['best_epoch_by_AIC']]+selected_breaks)
- # ax2 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
- # prop = loaded_data['prop'], title = title, ax = ax2)
- # ax1, ax2 = plot_all_epochs_thetafolder(loaded_data, mu, tgen, title, theta_scale, ax = [ax1, ax2])
-
- # fig1.savefig(title+'_combined_p1.pdf')
- # print("Wrote", title+'_combined_p1.pdf')
- # fig2.savefig(title+'_combined_p2.pdf')
- # print("Wrote", title+'_combined_p2.pdf')
-
- # END OF COMBINED PLOT CODE
-
-
- # Start of Parsing real swp2 output
- folder_splitted = folder_path.split("/")
- swp2_summary = "/".join(folder_splitted[:-2])+'/'+folder_splitted[-3]+".final.summary"
- swp2_vals = parse_stairwayplot_output_summary(stwplt_out = swp2_summary)
- swp2_x, swp2_y = swp2_vals[0], swp2_vals[1]
- remove_back_and_forth_points(swp2_x, swp2_y)
- # End of Parsing real swp2 output
- plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
- prop = loaded_data['prop'], title = title, ax = None, max_breaks = breaks)
- plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], mu = mu, tgen = tgen, subset=[loaded_data['best_epoch_by_AIC']]+selected_breaks,
- # plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'], subset=list(range(0,3))+[loaded_data['best_epoch_by_AIC']]+selected_breaks,
- prop = loaded_data['prop'], title = title, swp2_lines = [swp2_x, swp2_y], ax = None)
- plot_all_epochs_thetafolder(loaded_data, mu, tgen, title, theta_scale, ax = None)
-
- # plt.close(fig1)
- # plt.close(fig2)
-
- def remove_back_and_forth_points(x_values, y_values):
- # to deal with some weirdness of plotting that occur sometimes with the swp2 output
- # sometimes the line is going back and forth as x_k > x_(k+1), which is normally not possible
- i = 0
- while i < len(x_values) - 1:
- if x_values[i] >= x_values[i+1]:
- del x_values[i]
- del y_values[i]
- else:
- i += 1
- def parse_stairwayplot_output_summary(stwplt_out, xlim = None, ylim = None, title = "default title", plot = False):
- #col 5
- year = []
- # col 6
- ne_median = []
- ne_2_5 = []
- ne_97_5 = []
- ne_12_5 = []
- # col 10
- ne_87_5 = []
- with open(stwplt_out, "r") as stwplt_stream:
- for line in stwplt_stream:
- ## Line format
- # mutation_per_site n_estimation theta_per_site_median theta_per_site_2.5% theta_per_site_97.5% year Ne_median Ne_2.5% Ne_97.5% Ne_12.5% Ne_87.5%
- if not line.startswith("mutation_per_site"):
- #not header
- values = line.strip().split()
- year.append(float(values[5]))
- ne_median.append(float(values[6]))
- ne_2_5.append(float(values[7]))
- ne_97_5.append(float(values[8]))
- ne_12_5.append(float(values[9]))
- ne_87_5.append(float(values[10]))
-
- vals = [year, ne_median, ne_2_5, ne_97_5, ne_12_5, ne_87_5]
- if plot :
- # plot parsed data
- label = ["Ne median", "Ne 2.5%", "Ne 97.5%", "Ne 12.5%", "Ne 87.5%"]
- for i in range(1, 5):
- fig, = plt.plot(year, vals[i], '--', alpha = 0.4)
- fig.set_label(label[i])
- # # last plot is median
- fig, = plt.plot(year, ne_median, 'r-', lw=2)
- fig.set_label(label[0])
- plt.legend()
- plt.ylabel("Individuals (Ne)")
- plt.xlabel("Time (years)")
- if xlim:
- plt.xlim(xlim)
- if ylim:
- plt.ylim(ylim)
- plt.title(title)
- plt.show()
- plt.close()
- return vals
-
- if __name__ == "__main__":
-
- if len(sys.argv) != 4:
- print("Need 3 args: ThetaFolder MutationRate GenerationTime")
- exit(0)
-
- folder_path = sys.argv[1]
- mu = sys.argv[2]
- tgen = sys.argv[3]
-
- plot_all_epochs_thetafolder(folder_path, mu, tgen)
|