123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- """ Custom graphics lib for pop gen or genomics
-
- FOREST Thomas (thomas.forest@college-de-france.fr)
-
-
-
- """
-
- import matplotlib.pyplot as plt
- import matplotlib.ticker as ticker
- import numpy as np
- import gc
- import time
- import datetime
- import pandas as pd
- # custom libs
- from frst import vcf_utils
-
-
- def heatmap(data, row_labels=None, col_labels=None, ax=None,
- cbar_kw={}, cbarlabel="", **kwargs):
- """
- Create a heatmap from a numpy array and two lists of labels.
- (from the matplotlib doc)
-
- Parameters
- ----------
- data
- A 2D numpy array of shape (M, N).
- row_labels
- A list or array of length M with the labels for the rows.
- col_labels
- A list or array of length N with the labels for the columns.
- ax
- A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If
- not provided, use current axes or create a new one. Optional.
- cbar_kw
- A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.
- cbarlabel
- The label for the colorbar. Optional.
- **kwargs
- All other arguments are forwarded to `imshow`.
- """
-
- if not ax:
- ax = plt.gca()
-
- # Plot the heatmap
- im = ax.imshow(data, **kwargs)
-
- # Create colorbar
- cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
- cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")
-
- # Show all ticks and label them with the respective list entries.
- if col_labels:
- ax.set_xticks(col_labels)
- if row_labels:
- ax.set_yticks(row_labels)
-
- # Let the horizontal axes labeling appear on top.
- ax.tick_params(top=True, bottom=False,
- labeltop=True, labelbottom=False)
-
- # Rotate the tick labels and set their alignment.
- plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",
- rotation_mode="anchor")
-
- # Turn spines off and create white grid.
- ax.spines[:].set_visible(False)
-
- ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
- ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
- ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
- ax.tick_params(which="minor", bottom=False, left=False)
-
- return im, cbar
-
- def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
- textcolors=("black", "white"),
- threshold=None, **textkw):
- """
- A function to annotate a heatmap.
- (from the matplotlib doc)
- Parameters
- ----------
- im
- The AxesImage to be labeled.
- data
- Data used to annotate. If None, the image's data is used. Optional.
- valfmt
- The format of the annotations inside the heatmap. This should either
- use the string format method, e.g. "$ {x:.2f}", or be a
- `matplotlib.ticker.Formatter`. Optional.
- textcolors
- A pair of colors. The first is used for values below a threshold,
- the second for those above. Optional.
- threshold
- Value in data units according to which the colors from textcolors are
- applied. If None (the default) uses the middle of the colormap as
- separation. Optional.
- **kwargs
- All other arguments are forwarded to each call to `text` used to create
- the text labels.
- """
-
- if not isinstance(data, (list, np.ndarray)):
- data = im.get_array()
-
- # Normalize the threshold to the images color range.
- if threshold is not None:
- threshold = im.norm(threshold)
- else:
- threshold = im.norm(data.max())/2.
-
- # Set default alignment to center, but allow it to be
- # overwritten by textkw.
- kw = dict(horizontalalignment="center",
- verticalalignment="center")
- kw.update(textkw)
-
- # Get the formatter in case a string is supplied
- if isinstance(valfmt, str):
- valfmt = ticker.StrMethodFormatter(valfmt)
-
- # Loop over the data and create a `Text` for each "pixel".
- # Change the text's color depending on the data.
- texts = []
- for i in range(data.shape[0]):
- for j in range(data.shape[1]):
- kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])
- text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)
- texts.append(text)
-
- return texts
-
- def plot_matrix(mat, legend=None, color_scale_type="YlGn", cbarlabel = "qt", title=None):
-
- fig, ax = plt.subplots(figsize=(10,8))
- if legend:
- row_labels = [k for k in range(len(mat))]
- col_labels = [k for k in range(len(mat[0]))]
- im, cbar = heatmap(mat, row_labels, col_labels, ax=ax,
- cmap=color_scale_type, cbarlabel=cbarlabel)
- else:
- im, cbar = heatmap(mat, ax=ax,
- cmap=color_scale_type, cbarlabel=cbarlabel)
- #texts = annotate_heatmap(im, valfmt="{x:.5f}")
- if title:
- ax.set_title(title)
- fig.tight_layout()
- plt.show()
-
- def plot(x, y, outfile = None, outfolder = None, ylab=None, xlab=None,
- title=None, label = None, show=True, nb_subplots = None, subplot_init = False,
- subplot_id = None, output = None, dpi = 300, width = 15, height = 15, plot_init = True):
-
- # before fig is generated, set its dimensions
- if plot_init:
- plt.figure(figsize=(width, height))
- if subplot_init:
- # define a certain amount of subplots
- fig, axs = plt.subplots(nb_subplots)
-
- if x:
- if nb_subplots:
- axs[subplot_id].plot(x, y)
- else:
- fig, = plt.plot(x, y)
- else:
- # x is optional
- if nb_subplots:
- # define a certain amount of subplots
- axs[subplot_id].plot(y)
- else:
- fig, = plt.plot(y)
- if label:
- # if legend
- fig.set_label(label)
- plt.legend()
- if ylab:
- plt.ylabel(ylab)
- if xlab:
- plt.xlabel(xlab)
- if title:
- plt.title(title)
- if outfile:
- plt.savefig(outfile, dpi = dpi)
- if show == True:
- plt.show()
-
-
- def scatter(x, y, ylab=None, xlab=None, title=None):
- plt.scatter(x, y)
- if ylab:
- plt.ylabel(ylab)
- if xlab:
- plt.xlabel(xlab)
- if title:
- plt.title(title)
- plt.show()
-
- def barplot(x=None, y=None, ylab=None, xlab=None, title=None):
- if x:
- x = list(x)
- plt.xticks(x)
- plt.bar(x, y)
- else:
- x = list(range(len(y)))
- plt.bar(x, y)
- plt.xticks(x)
- if ylab:
- plt.ylabel(ylab)
- if xlab:
- plt.xlabel(xlab)
- if title:
- plt.title(title)
- plt.show()
-
- def plot_chrom_continuity(vcf_entries, chr_id, x=None, y=None, outfile = None,
- outfolder = None, returned=False, show=True, label=True, step=1, nb_subplots = None,
- subplot_init = False, subplot_id = None, title = None, plot_init = False):
- chr_name = list(vcf_entries.keys())[chr_id]
- if label:
- label = chr_name
- if not title:
- title = "Genotyped pos in chr "+str(chr_id+1)+":'"+chr_name+"'"
- chr_entries = vcf_entries[chr_name]
- genotyped_pos = vcf_utils.genotyping_continuity_plot(chr_entries, step=step)
- if returned:
- # if we do not want to plot while executing
- # useful for storing the x,y coords in a variable for ex.
- return genotyped_pos
- else:
- # to plot on the fly
- plot(x=genotyped_pos[0], y=genotyped_pos[1], ylab = "genotyped pos.",
- xlab = "pos. in ref.",
- title = title,
- outfile = outfile, outfolder = outfolder, show=show, label=label,
- nb_subplots = nb_subplots, subplot_init = subplot_init, subplot_id = subplot_id, plot_init = plot_init)
-
- def plot_whole_karyotype(recent_variants, mem_clean = False, step = 1, show = True, min_chr_id = 0,
- max_chr_id = None, stacked = False, title = None, outfile = None):
- coords = []
- if max_chr_id :
- nb_iter = max_chr_id
- else:
- nb_iter = len(recent_variants) -1
- if show :
- iter_start = min_chr_id + 1
- if step == "auto" :
- step = round(len(recent_variants[list(recent_variants.keys())[min_chr_id]]) / 1000)
- if stacked:
- nb_subplots = nb_iter - min_chr_id
- subplot_init = True
- else:
- nb_subplots = None
- subplot_init = False
- vcf_utils.customgraphics.plot_chrom_continuity(recent_variants, chr_id = min_chr_id, show = False, returned = False, step = step,
- nb_subplots = nb_subplots, subplot_init = subplot_init, subplot_id = min_chr_id, plot_init = True)
- else :
- iter_start = 0
- for chr in range(iter_start, nb_iter):
- if show == False:
- x, y = vcf_utils.customgraphics.plot_chrom_continuity(recent_variants, chr_id = chr, show = False, returned = True, step = step)
- coords.append([x, y])
- if mem_clean:
- start = time.time()
- del x
- del y
- gc.collect()
- end = time.time()
- print("Cleaned mem. in", str(datetime.timedelta(seconds=end - start)))
- else:
- # if show is enable, use a step
- if step == "auto":
- step = round(len(recent_variants[list(recent_variants.keys())[chr]]) / 1000)
- vcf_utils.customgraphics.plot_chrom_continuity(recent_variants, chr_id = chr, show = False, returned = False, step = step, subplot_id = chr)
- # last case
- if show == True:
- vcf_utils.customgraphics.plot_chrom_continuity(recent_variants, chr_id = nb_iter, show = True, returned = False, step = step, subplot_id = nb_iter,
- title = title,
- outfile = outfile, plot_init = False)
- # maybe add a clean of recent_variants in extreme cases, before building the plots
- if show == False:
- return coords
-
- def plot_chrom_coverage(vcf_entries, chr_id):
- chr_name = list(vcf_entries.keys())[chr_id]
- chr_entries = vcf_entries[chr_name]
- coverage = vcf_utils.compute_coverage(chr_entries)
- barplot(coverage[0], coverage[1], ylab = "coverage (X)",
- xlab = "pos. in ref.",
- title = "Coverage for chr "+str(chr_id+1)+":'"+chr_name+"'")
|