|
@@ -1,4 +1,5 @@
|
1
|
1
|
import math
|
|
2
|
+import numpy as np
|
2
|
3
|
|
3
|
4
|
class Structure:
|
4
|
5
|
def __init__(self, res):
|
|
@@ -30,8 +31,8 @@ def get_turns(residues):
|
30
|
31
|
for j in range(3,6):
|
31
|
32
|
if(i+j<len(residues)):
|
32
|
33
|
if(res.h_bond(residues[i+j])<-0.5):
|
33
|
|
- print("TURN", i+1, i+j+1)
|
34
|
|
- turns[i] = Turn(j,i)
|
|
34
|
+ print(j,"TURN", residues[i].resid, residues[i+j].resid)
|
|
35
|
+ turns[residues[i].resid] = Turn(j,residues[i].resid)
|
35
|
36
|
return(turns)
|
36
|
37
|
|
37
|
38
|
def get_bridges(residues):
|
|
@@ -47,8 +48,8 @@ def get_bridges(residues):
|
47
|
48
|
and residues[j].h_bond(residues[i+1])<-0.5):
|
48
|
49
|
bridge = {'res1':residues[i-1].h_bond(residues[j]),
|
49
|
50
|
'res2':residues[j].h_bond(residues[i+1]),
|
50
|
|
- 'ipos':i,
|
51
|
|
- 'jpos':j,
|
|
51
|
+ 'ipos':residues[i].resid,
|
|
52
|
+ 'jpos':residues[j].resid,
|
52
|
53
|
'btype':"para"}
|
53
|
54
|
# if(residues[i-1].h_bond(residues[j])+
|
54
|
55
|
# residues[j].h_bond(residues[i+1]))<E_min:
|
|
@@ -60,8 +61,8 @@ def get_bridges(residues):
|
60
|
61
|
and residues[i].h_bond(residues[j+1])<-0.5):
|
61
|
62
|
bridge = {'res1':residues[j-1].h_bond(residues[i]),
|
62
|
63
|
'res2':residues[i].h_bond(residues[j+1]),
|
63
|
|
- 'ipos':i,
|
64
|
|
- 'jpos':j,
|
|
64
|
+ 'ipos':residues[i].resid,
|
|
65
|
+ 'jpos':residues[j].resid,
|
65
|
66
|
'btype':"para"}
|
66
|
67
|
# if(residues[j-1].h_bond(residues[i])+
|
67
|
68
|
# residues[i].h_bond(residues[j+1]))<E_min:
|
|
@@ -73,8 +74,8 @@ def get_bridges(residues):
|
73
|
74
|
and residues[j].h_bond(residues[i])<-0.5):
|
74
|
75
|
bridge = {'res1':residues[i].h_bond(residues[j]),
|
75
|
76
|
'res2':residues[j].h_bond(residues[i]),
|
76
|
|
- 'ipos':i,
|
77
|
|
- 'jpos':j,
|
|
77
|
+ 'ipos':residues[i].resid,
|
|
78
|
+ 'jpos':residues[j].resid,
|
78
|
79
|
'btype':"anti"}
|
79
|
80
|
# if(residues[i].h_bond(residues[j])+
|
80
|
81
|
# residues[j].h_bond(residues[i]))<E_min:
|
|
@@ -86,8 +87,8 @@ def get_bridges(residues):
|
86
|
87
|
and residues[j-1].h_bond(residues[i+1])<-0.5):
|
87
|
88
|
bridge = {'res1':residues[i-1].h_bond(residues[j+1]),
|
88
|
89
|
'res2':residues[j-1].h_bond(residues[i+1]),
|
89
|
|
- 'ipos':i,
|
90
|
|
- 'jpos':j,
|
|
90
|
+ 'ipos':residues[i].resid,
|
|
91
|
+ 'jpos':residues[j].resid,
|
91
|
92
|
'btype':"anti"}
|
92
|
93
|
# if(residues[i-1].h_bond(residues[j+1])+
|
93
|
94
|
# residues[j-1].h_bond(residues[i+1]))<E_min:
|
|
@@ -128,40 +129,34 @@ def get_helix(residues, turns):
|
128
|
129
|
i+=1
|
129
|
130
|
return(helix)
|
130
|
131
|
|
|
132
|
+def get_ladder(bridges):
|
|
133
|
+ ladders = {}
|
|
134
|
+ for i in range(len(bridges)):
|
|
135
|
+ k = 1
|
|
136
|
+ while bridges[i] == bridges[i+k]:
|
|
137
|
+ k+=1
|
|
138
|
+ if k>1:
|
|
139
|
+ ladders[bridges[i].res_num] = k-1
|
|
140
|
+
|
131
|
141
|
def get_bends(residues):
|
132
|
142
|
bends = {}
|
133
|
143
|
for i in range(2,len(residues)-2):
|
134
|
|
- # print("angle",i,calculer_angles(residues[i-2].atoms["CA"].coords,
|
135
|
|
- # residues[i].atoms["CA"].coords,
|
136
|
|
- # residues[i+2].atoms["CA"].coords))
|
137
|
|
-
|
138
|
144
|
angle = vector_angles(vectors_substr(position_vector(residues[i].atoms["CA"].coords),
|
139
|
145
|
position_vector(residues[i-2].atoms["CA"].coords)),
|
140
|
146
|
vectors_substr(position_vector(residues[i+2].atoms["CA"].coords),
|
141
|
147
|
position_vector(residues[i].atoms["CA"].coords)))
|
142
|
148
|
if(angle>70):
|
143
|
149
|
print("angle", residues[i].resid, angle)
|
|
150
|
+ bends[residues[i].resid] = angle
|
144
|
151
|
return(bends)
|
145
|
152
|
|
146
|
|
-def vecteur_deux_points (a, b):
|
|
153
|
+def vector_from_pos(a, b):
|
147
|
154
|
xAB = b[0]-a[0]
|
148
|
155
|
yAB = b[1]-a[1]
|
149
|
156
|
zAB = b[2]-a[2]
|
150
|
157
|
coord_AB = [xAB,yAB,zAB]
|
151
|
158
|
return coord_AB
|
152
|
159
|
|
153
|
|
-def produit_scalaire (a, b, c):
|
154
|
|
- coord_BA = vecteur_deux_points(b, a)
|
155
|
|
- coord_BC = vecteur_deux_points(b, c)
|
156
|
|
- dot_product = coord_BA[0]*coord_BC[0] + coord_BA[1]*coord_BC[1] + coord_BA[2]*coord_BC[2]
|
157
|
|
- return dot_product
|
158
|
|
-
|
159
|
|
-
|
160
|
|
-def norme_vecteur (a,b):
|
161
|
|
- vecteur = vecteur_deux_points(a,b)
|
162
|
|
- norme = math.sqrt(vecteur[0]**2 + vecteur[1]**2 + vecteur[2]**2)
|
163
|
|
- return norme
|
164
|
|
-
|
165
|
160
|
def vector_norm(v):
|
166
|
161
|
norm = math.sqrt(v[0]**2 + v[1]**2 + v[2]**2)
|
167
|
162
|
return norm
|
|
@@ -171,7 +166,7 @@ def dot_product(v1,v2):
|
171
|
166
|
return(dot_product)
|
172
|
167
|
|
173
|
168
|
def position_vector(c):
|
174
|
|
- vector = vecteur_deux_points([0,0,0],c)
|
|
169
|
+ vector = vector_from_pos([0,0,0],c)
|
175
|
170
|
return vector
|
176
|
171
|
|
177
|
172
|
def vectors_substr(v1, v2):
|
|
@@ -188,11 +183,59 @@ def vector_angles(v1,v2):
|
188
|
183
|
deg_angle = rad_angle*(180/math.pi)
|
189
|
184
|
return deg_angle
|
190
|
185
|
|
191
|
|
-def calculer_angles (a,b,c):
|
192
|
|
- dot_product_ABC = produit_scalaire(a,b,c)
|
193
|
|
- norme_BA = norme_vecteur (b,a)
|
194
|
|
- norme_BC = norme_vecteur (b,c)
|
195
|
|
- terme = dot_product_ABC/(abs(norme_BA)*abs(norme_BC))
|
196
|
|
- angle_radian = math.acos(terme)
|
197
|
|
- angle_degre = angle_radian*(180/math.pi)
|
198
|
|
- return angle_degre
|
|
186
|
+def calc_dihedral(u1, u2, u3, u4):
|
|
187
|
+ """ Calculate dihedral angle method. From bioPython.PDB
|
|
188
|
+ (adapted to np.array)
|
|
189
|
+ Calculate the dihedral angle between 4 vectors
|
|
190
|
+ representing 4 connected points. The angle is in
|
|
191
|
+ [-pi, pi].
|
|
192
|
+
|
|
193
|
+ Adapted function of dihedral_angle_from_coordinates.py
|
|
194
|
+ by Eric Alcaide.
|
|
195
|
+ Source : https://gist.github.com/EricAlcaide
|
|
196
|
+ URL : https://gist.github.com/EricAlcaide/30d6bfdb8358d3a57d010c9a501fda56
|
|
197
|
+ """
|
|
198
|
+ #convert coords to numpy arrays
|
|
199
|
+ u1 = np.array(u1)
|
|
200
|
+ u2 = np.array(u2)
|
|
201
|
+ u3 = np.array(u3)
|
|
202
|
+ u4 = np.array(u4)
|
|
203
|
+
|
|
204
|
+ a1 = u2 - u1
|
|
205
|
+ a2 = u3 - u2
|
|
206
|
+ a3 = u4 - u3
|
|
207
|
+
|
|
208
|
+ v1 = np.cross(a1, a2)
|
|
209
|
+ v1 = v1 / (v1 * v1).sum(-1)**0.5
|
|
210
|
+ v2 = np.cross(a2, a3)
|
|
211
|
+ v2 = v2 / (v2 * v2).sum(-1)**0.5
|
|
212
|
+ porm = np.sign((v1 * a3).sum(-1))
|
|
213
|
+ rad = np.arccos((v1*v2).sum(-1) / ((v1**2).sum(-1) * (v2**2).sum(-1))**0.5)
|
|
214
|
+ if not porm == 0:
|
|
215
|
+ rad = rad * porm
|
|
216
|
+
|
|
217
|
+ deg_angle = rad*(180/math.pi)
|
|
218
|
+ return deg_angle
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+def get_chirality(residues):
|
|
222
|
+
|
|
223
|
+ for i in range(1,len(residues)-2):
|
|
224
|
+ chirality = {}
|
|
225
|
+ angle = calc_dihedral(residues[i-1].atoms["CA"].coords,
|
|
226
|
+ residues[i].atoms["CA"].coords,
|
|
227
|
+ residues[i+1].atoms["CA"].coords,
|
|
228
|
+ residues[i+2].atoms["CA"].coords)
|
|
229
|
+
|
|
230
|
+ if(angle>0 and angle<=180):
|
|
231
|
+ sign="+"
|
|
232
|
+ print("angle", residues[i].resid, "+", angle)
|
|
233
|
+
|
|
234
|
+ if(angle<=0 and angle > -180):
|
|
235
|
+ sign="-"
|
|
236
|
+ print("angle", residues[i].resid, "-", angle)
|
|
237
|
+
|
|
238
|
+ chirality[residues[i].resid] = sign
|
|
239
|
+
|
|
240
|
+ return chirality
|
|
241
|
+
|