import math from structure import * class Atom: def dist_atoms(self, atom2): return(math.sqrt((self.coord_x-atom2.coord_x)**2 + (self.coord_y-atom2.coord_y)**2 + (self.coord_z-atom2.coord_z)**2)) def __init__(self, atom_id, atom_name, res_name, chain_id, res_seq_nb, insertion_code, coordinates): self.atom_id = atom_id self.atom_name = atom_name self.res_name = res_name self.chain_id = chain_id self.res_seq_nb = res_seq_nb self.insertion_code = insertion_code self.coord_x = coordinates[0] self.coord_y = coordinates[1] self.coord_z = coordinates[2] self.coords = coordinates class Residue: def __init__(self, atoms_list): self.atoms = {} for atom in atoms_list: self.atoms[atom.atom_name] = atom self.resid = atom.res_seq_nb self.res_name = atom.res_name self.chain_id = atom.chain_id self.insertion_code = atom.insertion_code def h_bond(self, res2): if("H" not in res2.atoms.keys()): return(False) # dimensionnal factor, in kcal/mole f = 332 # partial charges q1 = 0.42 q2 = 0.20 # distance between O-N atoms, in angströms r_ON = self.atoms["O"].dist_atoms(res2.atoms["N"]) # distance between C-H atoms, in angströms r_CH = self.atoms["C"].dist_atoms(res2.atoms["H"]) # distance between O-H atoms, in angströms r_OH = self.atoms["O"].dist_atoms(res2.atoms["H"]) # distance between C-N atoms, in angströms r_CN = self.atoms["C"].dist_atoms(res2.atoms["N"]) # electrostatic interaction energy, in kcal/mole E = q1*q2*(1/r_ON + 1/r_CH - 1/r_OH - 1/r_CN)*f return(E) def get_turns(self, residues): """ Get all the turns from a specific residue. """ turns = {} i = residues.index(self) k = 0 for j in range(3,6): if(i+j= 1 and i < len(residues)-4): E_min = 0 for j in range(i+2,len(residues)-1): # select triplet with the minimal energy if(residues[i-1].h_bond(residues[j])<-0.5 and residues[j].h_bond(residues[i+1])<-0.5): bridge = {'res1':residues[i-1].h_bond(residues[j]), 'res2':residues[j].h_bond(residues[i+1]), 'ipos':residues[i].resid, 'jpos':residues[j].resid, 'btype':"para"} if(residues[j-1].h_bond(residues[i])<-0.5 and residues[i].h_bond(residues[j+1])<-0.5): bridge = {'res1':residues[j-1].h_bond(residues[i]), 'res2':residues[i].h_bond(residues[j+1]), 'ipos':residues[i].resid, 'jpos':residues[j].resid, 'btype':"para"} if(residues[i].h_bond(residues[j])<-0.5 and residues[j].h_bond(residues[i])<-0.5): bridge = {'res1':residues[i].h_bond(residues[j]), 'res2':residues[j].h_bond(residues[i]), 'ipos':residues[i].resid, 'jpos':residues[j].resid, 'btype':"anti"} if(residues[i-1].h_bond(residues[j+1])<-0.5 and residues[j-1].h_bond(residues[i+1])<-0.5): bridge = {'res1':residues[i-1].h_bond(residues[j+1]), 'res2':residues[j-1].h_bond(residues[i+1]), 'ipos':residues[i].resid, 'jpos':residues[j].resid, 'btype':"anti"} if(bridge): if(bridge['res1']+bridge['res2']0): return(bridges[coord_bridge[0]]) else: return(False) def get_helix(self, residues): """ Return if there is an helix at a given residue, as well as its type. """ i = residues.index(self) # if there are no turns or it is the first residue, skip if i == 0: return False if(self.get_turns(residues) and residues[i-1].get_turns(residues)): print(self.get_turns(residues).turn_type,"- HELIX at", residues[i].resid) return(self.get_turns(residues).turn_type, residues[i].resid) return(False) def get_helix2(self, residues): """ Return if there is an helix at a given residue, as well as its type. """ i = residues.index(self) # if there are no turns or it is the first residue, skip if i == 0: return False if(i in turns.keys() and i-1 in turns.keys()): print(turns[i].turn_type,"- HELIX at", residues[i].resid) return(turns[i].turn_type, residues[i].resid) return(False) def get_ladders(self, residues, ladders={}): #ladders = {} i = residues.index(self) if i != 0: if self.get_bridges(residues): if (residues[i-1].get_bridges(residues)): local_bridge = self.get_bridges(residues) consec_bridge = residues[i-1].get_bridges(residues) if local_bridge.bridge_type == consec_bridge.bridge_type: print("ladder", consec_bridge.res_num, local_bridge.res_num) ladders[i] = {'start':i-1, 'end':i, 'bridges':[consec_bridge, local_bridge]} return ladders def get_ladder(self, residues): #ladders = {} i = residues.index(self) if i != 0: if self.get_bridges(residues): if (residues[i-1].get_bridges(residues)): local_bridge = self.get_bridges(residues) consec_bridge = residues[i-1].get_bridges(residues) if local_bridge.bridge_type == consec_bridge.bridge_type: #print("ladder", consec_bridge.res_num, local_bridge.res_num) ladder = {'start':consec_bridge.res_num, 'end':local_bridge.res_num, 'bridges':[consec_bridge, local_bridge]} return ladder return False def get_sheets(self, residues): """ Bridges between ladders. Check if 1 bridge between one ladder and one or more other ladders. Iterate over all residues of one ladder and check if bridge with other residues of the other ladders. """ sheets = {} sheet_start = residues.index(self) j=sheet_start k=2 if(self.get_ladder(residues)): local_ladder = self.get_ladder(residues) while j < len(residues)-2: k = 2 while residues[j+k].get_ladder(residues): if(residues[j+k].get_bridges(residues)): j = j+k k+=1 if(k>): last = j j+=1 print(j) if(k>2): sheet_end = last print("SHEET", sheet_start, sheet_end) def get_sheets2(self): """ Bridges between ladders. Check if 1 bridge between one ladder and one or more other ladders. Iterate over all residues of one ladder and check if bridge with other residues of the other ladders. """ sheets = {} for ladder in ladders: for ladd2 in ladders: for bridge in ladders[ladder]['bridges']: if bridge.res_partner in res_list(ladders[ladd2]): print("ladder",ladders[ladder]['start'], ladders[ladder]['end'],"bridge",bridge.res_num, bridge.res_partner, "ladder 2",ladders[ladd2]['start'], ladders[ladd2]['end']) #print("stop ladder 2") print("stop ladder 1") def get_ladders2(self, bridges, residues): ladders = {} i = residues.index(self) if i != 0: k = 1 if i in bridges.keys(): temp_bridges = [bridges[i]] while ((i+k in bridges.keys()) and (bridges[i].bridge_type == bridges[i+k].bridge_type)): temp_bridges.append(bridges[i+k]) k+=1 if k>1: print("ladder", bridges[i].res_num, bridges[i+k-1].res_num) ladders[i] = {'start':bridges[i].res_num, 'end':bridges[i+k-1].res_num, 'bridges':temp_bridges} i+=k-1 else: i+=1 return ladders def get_sheets(ladders): """ Bridges between ladders. Check if 1 bridge between one ladder and one or more other ladders. Iterate over all residues of one ladder and check if bridge with other residues of the other ladders. """ sheets = {} for ladder in ladders: for ladd2 in ladders: for bridge in ladders[ladder]['bridges']: if bridge.res_partner in res_list(ladders[ladd2]): print("ladder",ladders[ladder]['start'], ladders[ladder]['end'],"bridge",bridge.res_num, bridge.res_partner, "ladder 2",ladders[ladd2]['start'], ladders[ladd2]['end']) #print("stop ladder 2") print("stop ladder 1") def res_list(ladder): # TODO : method in ladder class l=[] for i in range(ladder['start'], ladder['end']): l.append(i) return(l) def get_bends(residues): bends = {} for i in range(2,len(residues)-2): angle = math.degrees(vector_angles(vectors_substr(position_vector(residues[i].atoms["CA"].coords), position_vector(residues[i-2].atoms["CA"].coords)), vectors_substr(position_vector(residues[i+2].atoms["CA"].coords), position_vector(residues[i].atoms["CA"].coords)))) if(angle>70): print("angle", residues[i].resid, angle) bends[residues[i].resid] = angle return(bends) def get_chirality(residues): for i in range(1,len(residues)-2): chirality = {} angle = calc_dihedral(residues[i-1].atoms["CA"].coords, residues[i].atoms["CA"].coords, residues[i+1].atoms["CA"].coords, residues[i+2].atoms["CA"].coords) if(angle>0 and angle<=180): sign="+" print("chirality", residues[i].resid, "+", angle) if(angle<=0 and angle > -180): sign="-" print("chirality", residues[i].resid, "-", angle) chirality[residues[i].resid] = sign return chirality def get_phi_psi(residues): for i in range(len(residues)): if(i==0): phi = 360.0 else: phi = calc_dihedral(residues[i-1].atoms["C"].coords, residues[i].atoms["N"].coords, residues[i].atoms["CA"].coords, residues[i].atoms["C"].coords) if(i==len(residues)-1): psi = 360.0 else: psi = calc_dihedral(residues[i].atoms["N"].coords, residues[i].atoms["CA"].coords, residues[i].atoms["C"].coords, residues[i+1].atoms["N"].coords) print("ANGLES", i, phi, psi) def get_TCO(res1, res2): CO_res1 = vector_from_pos(res1.atoms["C"].coords, res1.atoms["O"].coords) CO_res2 = vector_from_pos(res2.atoms["C"].coords, res2.atoms["O"].coords) angle = vector_angles(CO_res1, CO_res2) return(math.cos(angle))