Browse Source

added Conformations.visualise method to visualise clusters, added lines to main

nicolas-zimmermann 5 years ago
parent
commit
194bb3dcef
2 changed files with 62 additions and 3 deletions
  1. BIN
      easter.mp3
  2. 62 3
      src/projet8.py

BIN
easter.mp3 View File


+ 62 - 3
src/projet8.py View File

@@ -94,7 +94,8 @@ class Conformations:
94 94
         This function returns a distance matrix from the dissimilarity matrix.
95 95
         
96 96
         Arguments :
97
-            - diss_matrix : ndarray obtained from Configurations.dissimilarity
97
+            - diss_matrix : ndarray 
98
+                obtained from Configurations.dissimilarity
98 99
         """
99 100
         diss_matrix = -diss_matrix
100 101
         diss_matrix = (diss_matrix - np.min(diss_matrix))/np.ptp(diss_matrix)
@@ -109,7 +110,7 @@ class Conformations:
109 110
         Returns clusters and medoids computed with kmedoids on a distance matrix
110 111
         Arguments :
111 112
             - matrix : str, ('identity' or 'dissimilarity')
112
-                       corresponding to the desired distance matrix to
113
+                       corresponding to the desired distance matrix to be
113 114
                        computed
114 115
             - ncluster number of clusters to be computed
115 116
         """
@@ -140,11 +141,69 @@ class Conformations:
140 141
 
141 142
         return (clusters, medoids)
142 143
 
144
+    def visualise(clusters, output_name=None):
145
+        """
146
+        Generate an image to visualise clusters. Can currently display up to
147
+        seven different colors
148
+        Arguments :
149
+            - clusters : list of lists 
150
+                output of the small_kmedoids method
151
+            
152
+            - output_name : str
153
+                desired filename for the image output, if none don't save file
154
+        """
155
+        nb_confs = sum([len(x) for x in clusters])
156
+        x = np.arange(nb_confs)
157
+        y = np.zeros(nb_confs)
158
+
159
+        for i in range(len(clusters_diss)):
160
+            for j in clusters_diss[i]:
161
+                y[j] = i+1
162
+        
163
+        color = []
164
+        for i in y:
165
+            if i == 1:
166
+                color.append('b')
167
+            if i == 2:
168
+                color.append('c')
169
+            if i == 3:
170
+                color.append('g')
171
+            if i == 4:
172
+                color.append('y')
173
+            if i == 5:
174
+                color.append('r')
175
+            if i == 6:
176
+                color.append('m')
177
+            else:
178
+                color.append('k')
179
+
180
+        plt.bar(x, y, width=1.0, color=color)
181
+        
182
+        if output_name != None:
183
+            plt.savefig(output_name)
184
+
143 185
 if __name__ == "__main__":
144 186
     if len(sys.argv) < 2:
145
-        sys.exit("Error : usage '$ python3 projet8 md.pdb'")
187
+        sys.exit("Error : usage '$ python3 projet8 md.pdb ncluster(int)'")
146 188
     
189
+    # Initialization of the class, meaning loading the pdb and writing pd.df
147 190
     confs = Conformations(sys.argv[1])
191
+    nclusters = int(sys.argv[2])
192
+    
193
+    # Computation of the distance matrixes
194
+    confs.identity()
195
+    confs.dissimilarity()
196
+
197
+    # Running the kmedoids algorithm on the identity distance matrix
198
+    clusters_idt = confs.small_kmedoids('identity', nclusters)
199
+    medoids_idt = clusters_idt[1]
200
+    clusters_idt = clusters_idt[0]
201
+
202
+    # Running the kmedoids algorithm on the dissimilarity distance matrix
203
+    clusters_diss = confs.small_kmedoids('dissimilarity', nclusters)
204
+    medoids_diss = clusters_diss[1]
205
+    clusters_diss = clusters_diss[0]
206
+    
148 207
     
149 208
 
150 209
     print(confs.df)