|
@@ -1,327 +0,0 @@
|
1
|
|
-"""!
|
2
|
|
-
|
3
|
|
-@brief Cluster analysis algorithm: K-Medoids.
|
4
|
|
-@details Implementation based on papers @cite book::algorithms_for_clustering_data, @cite book::finding_groups_in_data.
|
5
|
|
-
|
6
|
|
-@authors Andrei Novikov (pyclustering@yandex.ru)
|
7
|
|
-@date 2014-2019
|
8
|
|
-@copyright GNU Public License
|
9
|
|
-
|
10
|
|
-@cond GNU_PUBLIC_LICENSE
|
11
|
|
- PyClustering is free software: you can redistribute it and/or modify
|
12
|
|
- it under the terms of the GNU General Public License as published by
|
13
|
|
- the Free Software Foundation, either version 3 of the License, or
|
14
|
|
- (at your option) any later version.
|
15
|
|
-
|
16
|
|
- PyClustering is distributed in the hope that it will be useful,
|
17
|
|
- but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18
|
|
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19
|
|
- GNU General Public License for more details.
|
20
|
|
-
|
21
|
|
- You should have received a copy of the GNU General Public License
|
22
|
|
- along with this program. If not, see <http://www.gnu.org/licenses/>.
|
23
|
|
-@endcond
|
24
|
|
-
|
25
|
|
-"""
|
26
|
|
-
|
27
|
|
-
|
28
|
|
-import numpy
|
29
|
|
-
|
30
|
|
-from pyclustering.cluster.encoder import type_encoding
|
31
|
|
-
|
32
|
|
-from pyclustering.utils import medoid
|
33
|
|
-from pyclustering.utils.metric import distance_metric, type_metric
|
34
|
|
-
|
35
|
|
-import pyclustering.core.kmedoids_wrapper as wrapper
|
36
|
|
-
|
37
|
|
-from pyclustering.core.wrapper import ccore_library
|
38
|
|
-from pyclustering.core.metric_wrapper import metric_wrapper
|
39
|
|
-
|
40
|
|
-
|
41
|
|
-class kmedoids:
|
42
|
|
- """!
|
43
|
|
- @brief Class represents clustering algorithm K-Medoids.
|
44
|
|
- @details The algorithm is less sensitive to outliers tham K-Means. The principle difference between K-Medoids and K-Medians is that
|
45
|
|
- K-Medoids uses existed points from input data space as medoids, but median in K-Medians can be unreal object (not from
|
46
|
|
- input data space).
|
47
|
|
-
|
48
|
|
- Clustering example:
|
49
|
|
- @code
|
50
|
|
- from pyclustering.cluster.kmedoids import kmedoids
|
51
|
|
- from pyclustering.cluster import cluster_visualizer
|
52
|
|
- from pyclustering.utils import read_sample
|
53
|
|
- from pyclustering.samples.definitions import FCPS_SAMPLES
|
54
|
|
-
|
55
|
|
- # Load list of points for cluster analysis.
|
56
|
|
- sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
|
57
|
|
-
|
58
|
|
- # Set random initial medoids.
|
59
|
|
- initial_medoids = [1, 500]
|
60
|
|
-
|
61
|
|
- # Create instance of K-Medoids algorithm.
|
62
|
|
- kmedoids_instance = kmedoids(sample, initial_medoids)
|
63
|
|
-
|
64
|
|
- # Run cluster analysis and obtain results.
|
65
|
|
- kmedoids_instance.process()
|
66
|
|
- clusters = kmedoids_instance.get_clusters()
|
67
|
|
-
|
68
|
|
- # Show allocated clusters.
|
69
|
|
- print(clusters)
|
70
|
|
-
|
71
|
|
- # Display clusters.
|
72
|
|
- visualizer = cluster_visualizer()
|
73
|
|
- visualizer.append_clusters(clusters, sample)
|
74
|
|
- visualizer.show()
|
75
|
|
- @endcode
|
76
|
|
-
|
77
|
|
- Metric for calculation distance between points can be specified by parameter additional 'metric':
|
78
|
|
- @code
|
79
|
|
- # create Minkowski distance metric with degree equals to '2'
|
80
|
|
- metric = distance_metric(type_metric.MINKOWSKI, degree=2)
|
81
|
|
-
|
82
|
|
- # create K-Medoids algorithm with specific distance metric
|
83
|
|
- kmedoids_instance = kmedoids(sample, initial_medoids, metric=metric)
|
84
|
|
-
|
85
|
|
- # run cluster analysis and obtain results
|
86
|
|
- kmedoids_instance.process()
|
87
|
|
- clusters = kmedoids_instance.get_clusters()
|
88
|
|
- @endcode
|
89
|
|
-
|
90
|
|
- Distance matrix can be used instead of sequence of points to increase performance and for that purpose parameter 'data_type' should be used:
|
91
|
|
- @code
|
92
|
|
- # calculate distance matrix for sample
|
93
|
|
- sample = read_sample(path_to_sample)
|
94
|
|
- matrix = calculate_distance_matrix(sample)
|
95
|
|
-
|
96
|
|
- # create K-Medoids algorithm for processing distance matrix instead of points
|
97
|
|
- kmedoids_instance = kmedoids(matrix, initial_medoids, data_type='distance_matrix')
|
98
|
|
-
|
99
|
|
- # run cluster analysis and obtain results
|
100
|
|
- kmedoids_instance.process()
|
101
|
|
-
|
102
|
|
- clusters = kmedoids_instance.get_clusters()
|
103
|
|
- medoids = kmedoids_instance.get_medoids()
|
104
|
|
- @endcode
|
105
|
|
-
|
106
|
|
- """
|
107
|
|
-
|
108
|
|
-
|
109
|
|
- def __init__(self, data, initial_index_medoids, tolerance=0.001, ccore=True, **kwargs):
|
110
|
|
- """!
|
111
|
|
- @brief Constructor of clustering algorithm K-Medoids.
|
112
|
|
-
|
113
|
|
- @param[in] data (list): Input data that is presented as list of points (objects), each point should be represented by list or tuple.
|
114
|
|
- @param[in] initial_index_medoids (list): Indexes of intial medoids (indexes of points in input data).
|
115
|
|
- @param[in] tolerance (double): Stop condition: if maximum value of distance change of medoids of clusters is less than tolerance than algorithm will stop processing.
|
116
|
|
- @param[in] ccore (bool): If specified than CCORE library (C++ pyclustering library) is used for clustering instead of Python code.
|
117
|
|
- @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'metric', 'data_type', 'itermax').
|
118
|
|
-
|
119
|
|
- <b>Keyword Args:</b><br>
|
120
|
|
- - metric (distance_metric): Metric that is used for distance calculation between two points.
|
121
|
|
- - data_type (string): Data type of input sample 'data' that is processed by the algorithm ('points', 'distance_matrix').
|
122
|
|
- - itermax (uint): Maximum number of iteration for cluster analysis.
|
123
|
|
-
|
124
|
|
- """
|
125
|
|
- self.__pointer_data = data
|
126
|
|
- self.__clusters = []
|
127
|
|
- self.__medoid_indexes = initial_index_medoids
|
128
|
|
- self.__tolerance = tolerance
|
129
|
|
-
|
130
|
|
- self.__metric = kwargs.get('metric', distance_metric(type_metric.EUCLIDEAN_SQUARE))
|
131
|
|
- self.__data_type = kwargs.get('data_type', 'points')
|
132
|
|
- self.__itermax = kwargs.get('itermax', 200)
|
133
|
|
-
|
134
|
|
- self.__distance_calculator = self.__create_distance_calculator()
|
135
|
|
-
|
136
|
|
- self.__ccore = ccore and self.__metric.get_type() != type_metric.USER_DEFINED
|
137
|
|
- if self.__ccore:
|
138
|
|
- self.__ccore = ccore_library.workable()
|
139
|
|
-
|
140
|
|
- #self.__verify_instance()
|
141
|
|
-
|
142
|
|
-
|
143
|
|
- def process(self):
|
144
|
|
- """!
|
145
|
|
- @brief Performs cluster analysis in line with rules of K-Medoids algorithm.
|
146
|
|
-
|
147
|
|
- @return (kmedoids) Returns itself (K-Medoids instance).
|
148
|
|
-
|
149
|
|
- @remark Results of clustering can be obtained using corresponding get methods.
|
150
|
|
-
|
151
|
|
- @see get_clusters()
|
152
|
|
- @see get_medoids()
|
153
|
|
-
|
154
|
|
- """
|
155
|
|
-
|
156
|
|
- if self.__ccore is True:
|
157
|
|
- ccore_metric = metric_wrapper.create_instance(self.__metric)
|
158
|
|
- self.__clusters, self.__medoid_indexes = wrapper.kmedoids(self.__pointer_data, self.__medoid_indexes, self.__tolerance, self.__itermax, ccore_metric.get_pointer(), self.__data_type)
|
159
|
|
-
|
160
|
|
- else:
|
161
|
|
- changes = float('inf')
|
162
|
|
- iterations = 0
|
163
|
|
-
|
164
|
|
- while changes > self.__tolerance and iterations < self.__itermax:
|
165
|
|
- self.__clusters = self.__update_clusters()
|
166
|
|
- update_medoid_indexes = self.__update_medoids()
|
167
|
|
-
|
168
|
|
- changes = max([self.__distance_calculator(self.__medoid_indexes[index], update_medoid_indexes[index]) for index in range(len(update_medoid_indexes))])
|
169
|
|
-
|
170
|
|
- self.__medoid_indexes = update_medoid_indexes
|
171
|
|
-
|
172
|
|
- iterations += 1
|
173
|
|
-
|
174
|
|
- return self
|
175
|
|
-
|
176
|
|
-
|
177
|
|
- def predict(self, points):
|
178
|
|
- """!
|
179
|
|
- @brief Calculates the closest cluster to each point.
|
180
|
|
-
|
181
|
|
- @param[in] points (array_like): Points for which closest clusters are calculated.
|
182
|
|
-
|
183
|
|
- @return (list) List of closest clusters for each point. Each cluster is denoted by index. Return empty
|
184
|
|
- collection if 'process()' method was not called.
|
185
|
|
-
|
186
|
|
- An example how to calculate (or predict) the closest cluster to specified points.
|
187
|
|
- @code
|
188
|
|
- from pyclustering.cluster.kmedoids import kmedoids
|
189
|
|
- from pyclustering.samples.definitions import SIMPLE_SAMPLES
|
190
|
|
- from pyclustering.utils import read_sample
|
191
|
|
-
|
192
|
|
- # Load list of points for cluster analysis.
|
193
|
|
- sample = read_sample(SIMPLE_SAMPLES.SAMPLE_SIMPLE3)
|
194
|
|
-
|
195
|
|
- # Initial medoids for sample 'Simple3'.
|
196
|
|
- initial_medoids = [4, 12, 25, 37]
|
197
|
|
-
|
198
|
|
- # Create instance of K-Medoids algorithm with prepared centers.
|
199
|
|
- kmedoids_instance = kmedoids(sample, initial_medoids)
|
200
|
|
-
|
201
|
|
- # Run cluster analysis.
|
202
|
|
- kmedoids_instance.process()
|
203
|
|
-
|
204
|
|
- # Calculate the closest cluster to following two points.
|
205
|
|
- points = [[0.35, 0.5], [2.5, 2.0]]
|
206
|
|
- closest_clusters = kmedoids_instance.predict(points)
|
207
|
|
- print(closest_clusters)
|
208
|
|
- @endcode
|
209
|
|
-
|
210
|
|
- """
|
211
|
|
-
|
212
|
|
- if len(self.__clusters) == 0:
|
213
|
|
- return []
|
214
|
|
-
|
215
|
|
- medoids = [ self.__pointer_data[index] for index in self.__medoid_indexes ]
|
216
|
|
- differences = numpy.zeros((len(points), len(medoids)))
|
217
|
|
- for index_point in range(len(points)):
|
218
|
|
- differences[index_point] = [ self.__metric(points[index_point], center) for center in medoids ]
|
219
|
|
-
|
220
|
|
- return numpy.argmin(differences, axis=1)
|
221
|
|
-
|
222
|
|
-
|
223
|
|
- def get_clusters(self):
|
224
|
|
- """!
|
225
|
|
- @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data.
|
226
|
|
-
|
227
|
|
- @see process()
|
228
|
|
- @see get_medoids()
|
229
|
|
-
|
230
|
|
- """
|
231
|
|
-
|
232
|
|
- return self.__clusters
|
233
|
|
-
|
234
|
|
-
|
235
|
|
- def get_medoids(self):
|
236
|
|
- """!
|
237
|
|
- @brief Returns list of medoids of allocated clusters represented by indexes from the input data.
|
238
|
|
-
|
239
|
|
- @see process()
|
240
|
|
- @see get_clusters()
|
241
|
|
-
|
242
|
|
- """
|
243
|
|
-
|
244
|
|
- return self.__medoid_indexes
|
245
|
|
-
|
246
|
|
-
|
247
|
|
- def get_cluster_encoding(self):
|
248
|
|
- """!
|
249
|
|
- @brief Returns clustering result representation type that indicate how clusters are encoded.
|
250
|
|
-
|
251
|
|
- @return (type_encoding) Clustering result representation.
|
252
|
|
-
|
253
|
|
- @see get_clusters()
|
254
|
|
-
|
255
|
|
- """
|
256
|
|
-
|
257
|
|
- return type_encoding.CLUSTER_INDEX_LIST_SEPARATION
|
258
|
|
-
|
259
|
|
-
|
260
|
|
- def __verify_instance(self):
|
261
|
|
- pass
|
262
|
|
-
|
263
|
|
-
|
264
|
|
- def __create_distance_calculator(self):
|
265
|
|
- """!
|
266
|
|
- @brief Creates distance calculator in line with algorithms parameters.
|
267
|
|
-
|
268
|
|
- @return (callable) Distance calculator.
|
269
|
|
-
|
270
|
|
- """
|
271
|
|
- if self.__data_type == 'points':
|
272
|
|
- return lambda index1, index2: self.__metric(self.__pointer_data[index1], self.__pointer_data[index2])
|
273
|
|
-
|
274
|
|
- elif self.__data_type == 'distance_matrix':
|
275
|
|
- if isinstance(self.__pointer_data, numpy.matrix):
|
276
|
|
- return lambda index1, index2: self.__pointer_data.item((index1, index2))
|
277
|
|
-
|
278
|
|
- return lambda index1, index2: self.__pointer_data[index1][index2]
|
279
|
|
-
|
280
|
|
- else:
|
281
|
|
- raise TypeError("Unknown type of data is specified '%s'" % self.__data_type)
|
282
|
|
-
|
283
|
|
-
|
284
|
|
- def __update_clusters(self):
|
285
|
|
- """!
|
286
|
|
- @brief Calculate distance to each point from the each cluster.
|
287
|
|
- @details Nearest points are captured by according clusters and as a result clusters are updated.
|
288
|
|
-
|
289
|
|
- @return (list) updated clusters as list of clusters where each cluster contains indexes of objects from data.
|
290
|
|
-
|
291
|
|
- """
|
292
|
|
-
|
293
|
|
- clusters = [[self.__medoid_indexes[i]] for i in range(len(self.__medoid_indexes))]
|
294
|
|
- for index_point in range(len(self.__pointer_data)):
|
295
|
|
- if index_point in self.__medoid_indexes:
|
296
|
|
- continue
|
297
|
|
-
|
298
|
|
- index_optim = -1
|
299
|
|
- dist_optim = float('Inf')
|
300
|
|
-
|
301
|
|
- for index in range(len(self.__medoid_indexes)):
|
302
|
|
- dist = self.__distance_calculator(index_point, self.__medoid_indexes[index])
|
303
|
|
-
|
304
|
|
- if dist < dist_optim:
|
305
|
|
- index_optim = index
|
306
|
|
- dist_optim = dist
|
307
|
|
-
|
308
|
|
- clusters[index_optim].append(index_point)
|
309
|
|
-
|
310
|
|
- return clusters
|
311
|
|
-
|
312
|
|
-
|
313
|
|
- def __update_medoids(self):
|
314
|
|
- """!
|
315
|
|
- @brief Find medoids of clusters in line with contained objects.
|
316
|
|
-
|
317
|
|
- @return (list) list of medoids for current number of clusters.
|
318
|
|
-
|
319
|
|
- """
|
320
|
|
-
|
321
|
|
- medoid_indexes = [-1] * len(self.__clusters)
|
322
|
|
-
|
323
|
|
- for index in range(len(self.__clusters)):
|
324
|
|
- medoid_index = medoid(self.__pointer_data, self.__clusters[index], metric=self.__metric, data_type=self.__data_type)
|
325
|
|
- medoid_indexes[index] = medoid_index
|
326
|
|
-
|
327
|
|
- return medoid_indexes
|