|
@@ -16,7 +16,7 @@ def log_facto(k):
|
16
|
16
|
val += np.log(i)
|
17
|
17
|
return val
|
18
|
18
|
|
19
|
|
-def return_x_y_from_stwp_theta_file(stwp_theta_file, breaks, mu, tgen, relative_theta_scale = False):
|
|
19
|
+def parse_stwp_theta_file(stwp_theta_file, breaks, mu, tgen, relative_theta_scale = False):
|
20
|
20
|
with open(stwp_theta_file, "r") as swp_file:
|
21
|
21
|
# Read the first line
|
22
|
22
|
line = swp_file.readline()
|
|
@@ -109,15 +109,8 @@ def return_x_y_from_stwp_theta_file(stwp_theta_file, breaks, mu, tgen, relative_
|
109
|
109
|
x.append(list(t.values())[time])
|
110
|
110
|
x.append(list(t.values())[time])
|
111
|
111
|
x.append(list(t.values())[len(t.values())-1])
|
112
|
|
- # if relative_theta_scale:
|
113
|
|
- # # rescale
|
114
|
|
- # #N0 = y[0]
|
115
|
|
- # # for i in range(len(y)):
|
116
|
|
- # # # divide by N0
|
117
|
|
- # # y[i] = y[i]/N0
|
118
|
|
- # # x[i] = x[i]/N0
|
119
|
|
- return x,y,likelihood,thetas,sfs,L
|
120
|
112
|
|
|
113
|
+ return x,y,likelihood,thetas,sfs,L
|
121
|
114
|
|
122
|
115
|
def plot_k_epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title", theta_scale = True):
|
123
|
116
|
scenari = {}
|
|
@@ -125,7 +118,7 @@ def plot_k_epochs_thetafolder(folder_path, mu, tgen, breaks = 2, title = "Title"
|
125
|
118
|
for file_name in os.listdir(folder_path):
|
126
|
119
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
127
|
120
|
# Perform actions on each file
|
128
|
|
- x, y, likelihood, theta, sfs, L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
121
|
+ x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
129
|
122
|
tgen = tgen,
|
130
|
123
|
mu = mu, relative_theta_scale = theta_scale)
|
131
|
124
|
if x == 0 or y == 0:
|
|
@@ -178,6 +171,265 @@ def plot_straight_x_y(x,y):
|
178
|
171
|
x_1.append(x[-1])
|
179
|
172
|
return x_1, y_1
|
180
|
173
|
|
|
174
|
+def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title",
|
|
175
|
+ theta_scale = True, ax = None, input = None, output = None):
|
|
176
|
+ #scenari = {}
|
|
177
|
+ cpt = 0
|
|
178
|
+ epochs = {}
|
|
179
|
+ for file_name in os.listdir(folder_path):
|
|
180
|
+ breaks = 0
|
|
181
|
+ cpt +=1
|
|
182
|
+ if os.path.isfile(os.path.join(folder_path, file_name)):
|
|
183
|
+ x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
184
|
+ tgen = tgen,
|
|
185
|
+ mu = mu, relative_theta_scale = theta_scale)
|
|
186
|
+ SFS_stored = sfs
|
|
187
|
+ L_stored = L
|
|
188
|
+ while not (x == 0 and y == 0):
|
|
189
|
+ if breaks not in epochs.keys():
|
|
190
|
+ epochs[breaks] = {}
|
|
191
|
+ epochs[breaks][likelihood] = x,y
|
|
192
|
+ breaks += 1
|
|
193
|
+ x,y,likelihood,theta,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
194
|
+ tgen = tgen,
|
|
195
|
+ mu = mu, relative_theta_scale = theta_scale)
|
|
196
|
+ if x == 0:
|
|
197
|
+ # last break did not work, then breaks = breaks-1
|
|
198
|
+ breaks -= 1
|
|
199
|
+ print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
|
|
200
|
+ print(cpt, "theta file(s) have been scanned.")
|
|
201
|
+ my_dpi = 300
|
|
202
|
+ if ax is None:
|
|
203
|
+ # intialize figure
|
|
204
|
+ my_dpi = 300
|
|
205
|
+ fnt_size = 18
|
|
206
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
207
|
+ fig, ax1 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
208
|
+ else:
|
|
209
|
+ fnt_size = 12
|
|
210
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
211
|
+ ax1 = ax[1][0,0]
|
|
212
|
+ ax1.set_yscale('log')
|
|
213
|
+ ax1.set_xscale('log')
|
|
214
|
+ ax1.grid(True,which="both", linestyle='--', alpha = 0.3)
|
|
215
|
+ brkpt_lik = []
|
|
216
|
+ top_plots = {}
|
|
217
|
+ for epoch, scenari in epochs.items():
|
|
218
|
+ # sort starting by the smallest -log(Likelihood)
|
|
219
|
+ best10_scenari = (sorted(list(scenari.keys())))[:10]
|
|
220
|
+ greatest_likelihood = best10_scenari[0]
|
|
221
|
+ # store the tuple breakpoints and likelihood for later plot
|
|
222
|
+ brkpt_lik.append((epoch, greatest_likelihood))
|
|
223
|
+ x, y = scenari[greatest_likelihood]
|
|
224
|
+ #without breakpoint
|
|
225
|
+ if epoch == 0:
|
|
226
|
+ # do something with the theta without bp and skip the plotting
|
|
227
|
+ N0 = y[0]
|
|
228
|
+ #continue
|
|
229
|
+ for i in range(len(y)):
|
|
230
|
+ # divide by N0
|
|
231
|
+ y[i] = y[i]/N0
|
|
232
|
+ x[i] = x[i]/N0
|
|
233
|
+ top_plots[greatest_likelihood] = x,y,epoch
|
|
234
|
+ plots_likelihoods = list(top_plots.keys())
|
|
235
|
+ for i in range(len(plots_likelihoods)):
|
|
236
|
+ plots_likelihoods[i] = float(plots_likelihoods[i])
|
|
237
|
+ best10_plots = sorted(plots_likelihoods)[:10]
|
|
238
|
+ top_plot_lik = str(best10_plots[0])
|
|
239
|
+ plot_handles = []
|
|
240
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
241
|
+ p0, = ax1.plot(top_plots[top_plot_lik][0], top_plots[top_plot_lik][1], 'o', linestyle = "-",
|
|
242
|
+ alpha=1, lw=2, label = str(top_plots[top_plot_lik][2])+' brks | Lik='+top_plot_lik)
|
|
243
|
+ plot_handles.append(p0)
|
|
244
|
+ for k, plot_Lk in enumerate(best10_plots[1:]):
|
|
245
|
+ plot_Lk = str(plot_Lk)
|
|
246
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
247
|
+ p, = ax1.plot(top_plots[plot_Lk][0], top_plots[plot_Lk][1], 'o', linestyle = "--",
|
|
248
|
+ alpha=1/(k+1), lw=1.5, label = str(top_plots[plot_Lk][2])+' brks | Lik='+plot_Lk)
|
|
249
|
+ plot_handles.append(p)
|
|
250
|
+ if theta_scale:
|
|
251
|
+ ax1.set_xlabel("Coal. time", fontsize=fnt_size)
|
|
252
|
+ ax1.set_ylabel("Pop. size scaled by N0", fontsize=fnt_size)
|
|
253
|
+ # recent_scale_lower_bound = 0.01
|
|
254
|
+ # recent_scale_upper_bound = 0.1
|
|
255
|
+ # ax1.axvline(x=recent_scale_lower_bound)
|
|
256
|
+ # ax1.axvline(x=recent_scale_upper_bound)
|
|
257
|
+ else:
|
|
258
|
+ # years
|
|
259
|
+ plt.set_xlabel("Time (years)", fontsize=fnt_size)
|
|
260
|
+ plt.set_ylabel("Individuals (N)", fontsize=fnt_size)
|
|
261
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
262
|
+ # print(fnt_size, "rcParam font.size=", plt.rcParams['font.size'])
|
|
263
|
+ ax1.legend(handles = plot_handles, loc='best', fontsize = fnt_size*0.5)
|
|
264
|
+ ax1.set_title(title)
|
|
265
|
+ if ax is None:
|
|
266
|
+ plt.savefig(title+'_b'+str(breaks)+'.pdf')
|
|
267
|
+ # plot likelihood against nb of breakpoints
|
|
268
|
+ # best possible likelihood from SFS
|
|
269
|
+ # Segregating sites
|
|
270
|
+ S = sum(SFS_stored)
|
|
271
|
+ # Number of kept sites from which the SFS is computed
|
|
272
|
+ L = L_stored
|
|
273
|
+ # number of monomorphic sites
|
|
274
|
+ S0 = L-S
|
|
275
|
+ # print("SFS", SFS_stored)
|
|
276
|
+ # print("S", S, "L", L, "S0=", S0)
|
|
277
|
+ # compute Ln
|
|
278
|
+ Ln = log_facto(S+S0) - log_facto(S0) + np.log(float(S0)/(S+S0)) * S0
|
|
279
|
+ for xi in range(0, len(SFS_stored)):
|
|
280
|
+ p_i = SFS_stored[xi] / float(S+S0)
|
|
281
|
+ Ln += np.log(p_i) * SFS_stored[xi] - log_facto(SFS_stored[xi])
|
|
282
|
+ # basic plot likelihood
|
|
283
|
+ if ax is None:
|
|
284
|
+ fig, ax2 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
285
|
+ # plt.rcParams['font.size'] = fnt_size
|
|
286
|
+ else:
|
|
287
|
+ #plt.rcParams['font.size'] = fnt_size
|
|
288
|
+ ax2 = ax[0][0,1]
|
|
289
|
+ ax2.plot(np.array(brkpt_lik)[:, 0], np.array(brkpt_lik)[:, 1].astype(float), 'o', linestyle = "dotted", lw=2)
|
|
290
|
+ ax2.axhline(y=-Ln, linestyle = "-.", color = "red", label = "$-\log\mathcal{L}$ = "+str(round(-Ln, 2)))
|
|
291
|
+ ax2.set_yscale('log')
|
|
292
|
+ ax2.set_xlabel("# breakpoints", fontsize=fnt_size)
|
|
293
|
+ ax2.set_ylabel("$-\log\mathcal{L}$", fontsize=fnt_size)
|
|
294
|
+ ax2.legend(loc='best', fontsize = fnt_size*0.5)
|
|
295
|
+ ax2.set_title(title+" Likelihood gain from # breakpoints")
|
|
296
|
+ if ax is None:
|
|
297
|
+ plt.savefig(title+'_Breakpts_Likelihood.pdf')
|
|
298
|
+ # AIC
|
|
299
|
+ if ax is None:
|
|
300
|
+ fig, ax3 = plt.subplots(figsize=(5000/my_dpi, 2800/my_dpi), dpi=my_dpi)
|
|
301
|
+ # plt.rcParams['font.size'] = '18'
|
|
302
|
+ else:
|
|
303
|
+ #plt.rcParams['font.size'] = fnt_size
|
|
304
|
+ ax3 = ax[1][0,1]
|
|
305
|
+ AIC = []
|
|
306
|
+ for brk in np.array(brkpt_lik)[:, 0]:
|
|
307
|
+ brk = int(brk)
|
|
308
|
+ AIC.append((2*brk+1)+2*np.array(brkpt_lik)[brk, 1].astype(float))
|
|
309
|
+ ax3.plot(np.array(brkpt_lik)[:, 0], AIC, 'o', linestyle = "dotted", lw=2)
|
|
310
|
+ # AIC = 2*k - 2ln(L) ; where k is the number of parameters, here brks+1
|
|
311
|
+ AIC_ln = 2*(len(brkpt_lik)+1) - 2*Ln
|
|
312
|
+ ax3.axhline(y=AIC_ln, linestyle = "-.", color = "red",
|
|
313
|
+ label = "Min. AIC = "+str(round(AIC_ln, 2)))
|
|
314
|
+ selected_brks_nb = AIC.index(min(AIC))
|
|
315
|
+ ax3.set_yscale('log')
|
|
316
|
+ ax3.set_xlabel("# breakpoints", fontsize=fnt_size)
|
|
317
|
+ ax3.set_ylabel("AIC")
|
|
318
|
+ ax3.legend(loc='best', fontsize = fnt_size*0.5)
|
|
319
|
+ ax3.set_title(title+" AIC")
|
|
320
|
+ if ax is None:
|
|
321
|
+ plt.savefig(title+'_Breakpts_Likelihood_AIC.pdf')
|
|
322
|
+ print("S", S)
|
|
323
|
+ # return plots
|
|
324
|
+ return ax[0], ax[1]
|
|
325
|
+
|
|
326
|
+def save_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_scale = True, input = None, output = None):
|
|
327
|
+ #scenari = {}
|
|
328
|
+ cpt = 0
|
|
329
|
+ epochs = {}
|
|
330
|
+ plots = {}
|
|
331
|
+ # store ['best'], and [0] for epoch 0 etc...
|
|
332
|
+ for file_name in os.listdir(folder_path):
|
|
333
|
+ breaks = 0
|
|
334
|
+ cpt +=1
|
|
335
|
+ if os.path.isfile(os.path.join(folder_path, file_name)):
|
|
336
|
+ x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
337
|
+ tgen = tgen,
|
|
338
|
+ mu = mu, relative_theta_scale = theta_scale)
|
|
339
|
+ SFS_stored = sfs
|
|
340
|
+ L_stored = L
|
|
341
|
+ while not (x == 0 and y == 0):
|
|
342
|
+ if breaks not in epochs.keys():
|
|
343
|
+ epochs[breaks] = {}
|
|
344
|
+ epochs[breaks][likelihood] = x,y
|
|
345
|
+ breaks += 1
|
|
346
|
+ x,y,likelihood,theta,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
347
|
+ tgen = tgen,
|
|
348
|
+ mu = mu, relative_theta_scale = theta_scale)
|
|
349
|
+ if x == 0:
|
|
350
|
+ # last break did not work, then breaks = breaks-1
|
|
351
|
+ breaks -= 1
|
|
352
|
+ print("\n*******\n"+title+"\n--------\n"+"mu="+str(mu)+"\ntgen="+str(tgen)+"\nbreaks="+str(breaks)+"\n*******\n")
|
|
353
|
+ print(cpt, "theta file(s) have been scanned.")
|
|
354
|
+
|
|
355
|
+ brkpt_lik = []
|
|
356
|
+ top_plots = {}
|
|
357
|
+ for epoch, scenari in epochs.items():
|
|
358
|
+ # sort starting by the smallest -log(Likelihood)
|
|
359
|
+ best10_scenari = (sorted(list(scenari.keys())))[:10]
|
|
360
|
+ greatest_likelihood = best10_scenari[0]
|
|
361
|
+ # store the tuple breakpoints and likelihood for later plot
|
|
362
|
+ brkpt_lik.append((epoch, greatest_likelihood))
|
|
363
|
+ x, y = scenari[greatest_likelihood]
|
|
364
|
+ #without breakpoint
|
|
365
|
+ if epoch == 0:
|
|
366
|
+ # do something with the theta without bp and skip the plotting
|
|
367
|
+ N0 = y[0]
|
|
368
|
+ #continue
|
|
369
|
+ for i in range(len(y)):
|
|
370
|
+ # divide by N0
|
|
371
|
+ y[i] = y[i]/N0
|
|
372
|
+ x[i] = x[i]/N0
|
|
373
|
+ top_plots[greatest_likelihood] = x,y,epoch
|
|
374
|
+ plots_likelihoods = list(top_plots.keys())
|
|
375
|
+ for i in range(len(plots_likelihoods)):
|
|
376
|
+ plots_likelihoods[i] = float(plots_likelihoods[i])
|
|
377
|
+ best10_plots = sorted(plots_likelihoods)[:10]
|
|
378
|
+ top_plot_lik = str(best10_plots[0])
|
|
379
|
+ # store x,y,brks,likelihood
|
|
380
|
+ plots['best'] = (top_plots[top_plot_lik][0], top_plots[top_plot_lik][1], str(top_plots[top_plot_lik][2]), top_plot_lik)
|
|
381
|
+ for k, plot_Lk in enumerate(best10_plots[1:]):
|
|
382
|
+ plot_Lk = str(plot_Lk)
|
|
383
|
+ plots[str(top_plots[plot_Lk][2])] = (top_plots[plot_Lk][0], top_plots[plot_Lk][1], str(top_plots[plot_Lk][2]), plot_Lk)
|
|
384
|
+
|
|
385
|
+ # plot likelihood against nb of breakpoints
|
|
386
|
+ # best possible likelihood from SFS
|
|
387
|
+ # Segregating sites
|
|
388
|
+ S = sum(SFS_stored)
|
|
389
|
+ # Number of kept sites from which the SFS is computed
|
|
390
|
+ L = L_stored
|
|
391
|
+ # number of monomorphic sites
|
|
392
|
+ S0 = L-S
|
|
393
|
+ # print("SFS", SFS_stored)
|
|
394
|
+ # print("S", S, "L", L, "S0=", S0)
|
|
395
|
+ # compute Ln
|
|
396
|
+ Ln = log_facto(S+S0) - log_facto(S0) + np.log(float(S0)/(S+S0)) * S0
|
|
397
|
+ for xi in range(0, len(SFS_stored)):
|
|
398
|
+ p_i = SFS_stored[xi] / float(S+S0)
|
|
399
|
+ Ln += np.log(p_i) * SFS_stored[xi] - log_facto(SFS_stored[xi])
|
|
400
|
+ # basic plot likelihood
|
|
401
|
+ Ln_Brks = [list(np.array(brkpt_lik)[:, 0]), list(np.array(brkpt_lik)[:, 1].astype(float))]
|
|
402
|
+ best_Ln = -Ln
|
|
403
|
+ AIC = []
|
|
404
|
+ for brk in np.array(brkpt_lik)[:, 0]:
|
|
405
|
+ brk = int(brk)
|
|
406
|
+ AIC.append((2*brk+1)+2*np.array(brkpt_lik)[brk, 1].astype(float))
|
|
407
|
+ AIC_Brks = [list(np.array(brkpt_lik)[:, 0]), AIC]
|
|
408
|
+ # AIC = 2*k - 2ln(L) ; where k is the number of parameters, here brks+1
|
|
409
|
+ AIC_ln = 2*(len(brkpt_lik)+1) - 2*Ln
|
|
410
|
+ best_AIC = AIC_ln
|
|
411
|
+
|
|
412
|
+ # to return : plots ; Ln_Brks ; AIC_Brks ; best_Ln ; best_AIC
|
|
413
|
+ # 'plots' dict keys: 'best', {epochs}('0', '1',...)
|
|
414
|
+ if input == None:
|
|
415
|
+ saved_plots = {"all_epochs":plots, "Ln_Brks":Ln_Brks,
|
|
416
|
+ "AIC_Brks":AIC_Brks, "best_Ln":best_Ln,
|
|
417
|
+ "best_AIC":best_AIC}
|
|
418
|
+ else:
|
|
419
|
+ # if the dict has to be loaded from input
|
|
420
|
+ with open(input, 'r') as json_file:
|
|
421
|
+ saved_plots = json.load(json_file)
|
|
422
|
+ saved_plots["all_epochs"] = plots
|
|
423
|
+ saved_plots["Ln_Brks"] = Ln_Brks
|
|
424
|
+ saved_plots["AIC_Brks"] = AIC_Brks
|
|
425
|
+ saved_plots["best_Ln"] = best_Ln
|
|
426
|
+ saved_plots["best_AIC"] = best_AIC
|
|
427
|
+ if output == None:
|
|
428
|
+ output = title+"_plotdata.json"
|
|
429
|
+ with open(output, 'w') as json_file:
|
|
430
|
+ json.dump(saved_plots, json_file)
|
|
431
|
+ return saved_plots
|
|
432
|
+
|
181
|
433
|
def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_scale = True, ax = None):
|
182
|
434
|
#scenari = {}
|
183
|
435
|
cpt = 0
|
|
@@ -186,7 +438,7 @@ def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
186
|
438
|
breaks = 0
|
187
|
439
|
cpt +=1
|
188
|
440
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
189
|
|
- x, y, likelihood, theta, sfs, L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
441
|
+ x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
190
|
442
|
tgen = tgen,
|
191
|
443
|
mu = mu, relative_theta_scale = theta_scale)
|
192
|
444
|
SFS_stored = sfs
|
|
@@ -196,7 +448,7 @@ def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
196
|
448
|
epochs[breaks] = {}
|
197
|
449
|
epochs[breaks][likelihood] = x,y
|
198
|
450
|
breaks += 1
|
199
|
|
- x,y,likelihood,theta,sfs,L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
|
451
|
+ x,y,likelihood,theta,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = breaks,
|
200
|
452
|
tgen = tgen,
|
201
|
453
|
mu = mu, relative_theta_scale = theta_scale)
|
202
|
454
|
if x == 0:
|
|
@@ -330,7 +582,7 @@ def plot_all_epochs_thetafolder(folder_path, mu, tgen, title = "Title", theta_sc
|
330
|
582
|
return ax[0], ax[1]
|
331
|
583
|
|
332
|
584
|
def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
333
|
|
- breaks_max = 10, output = None):
|
|
585
|
+ breaks_max = 10, input = None, output = None):
|
334
|
586
|
"""
|
335
|
587
|
Save theta values as is to do basic plots.
|
336
|
588
|
"""
|
|
@@ -341,7 +593,7 @@ def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
341
|
593
|
cpt +=1
|
342
|
594
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
343
|
595
|
for k in range(breaks_max):
|
344
|
|
- x,y,likelihood,thetas,sfs,L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = k,
|
|
596
|
+ x,y,likelihood,thetas,sfs,L = parse_stwp_theta_file(folder_path+file_name, breaks = k,
|
345
|
597
|
tgen = tgen,
|
346
|
598
|
mu = mu, relative_theta_scale = theta_scale)
|
347
|
599
|
if thetas == 0:
|
|
@@ -423,9 +675,16 @@ def save_k_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
423
|
675
|
# x2_plot, y2_plot = plot_straight_x_y(x_2, y)
|
424
|
676
|
p2 = x_2, y
|
425
|
677
|
lines_fig2.append(p2)
|
426
|
|
-
|
427
|
|
- saved_plots = {"raw_stairs":plots, "scaled_stairs":lines_fig2,
|
428
|
|
- "prop":prop}
|
|
678
|
+ if input == None:
|
|
679
|
+ saved_plots = {"raw_stairs":plots, "scaled_stairs":lines_fig2,
|
|
680
|
+ "prop":prop}
|
|
681
|
+ else:
|
|
682
|
+ # if the dict has to be loaded from input
|
|
683
|
+ with open(input, 'r') as json_file:
|
|
684
|
+ saved_plots = json.load(json_file)
|
|
685
|
+ saved_plots["raw_stairs"] = plots
|
|
686
|
+ saved_plots["scaled_stairs"] = lines_fig2
|
|
687
|
+ saved_plots["prop"] = prop
|
429
|
688
|
if output == None:
|
430
|
689
|
output = title+"_plotdata.json"
|
431
|
690
|
with open(output, 'w') as json_file:
|
|
@@ -536,7 +795,7 @@ def plot_test_theta(folder_path, mu, tgen, title = "Title", theta_scale = True,
|
536
|
795
|
cpt +=1
|
537
|
796
|
if os.path.isfile(os.path.join(folder_path, file_name)):
|
538
|
797
|
for k in range(breaks_max):
|
539
|
|
- x, y, likelihood, theta, sfs, L = return_x_y_from_stwp_theta_file(folder_path+file_name, breaks = k,
|
|
798
|
+ x, y, likelihood, theta, sfs, L = parse_stwp_theta_file(folder_path+file_name, breaks = k,
|
540
|
799
|
tgen = tgen,
|
541
|
800
|
mu = mu, relative_theta_scale = theta_scale)
|
542
|
801
|
if thetas == 0:
|
|
@@ -713,6 +972,7 @@ def combined_plot(folder_path, mu, tgen, breaks, title = "Title", theta_scale =
|
713
|
972
|
ax1 = plot_scaled_theta(plot_lines = loaded_data['scaled_stairs'],
|
714
|
973
|
prop = loaded_data['prop'], title = title, ax = ax1)
|
715
|
974
|
ax1, ax2 = plot_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, ax = [ax1, ax2])
|
|
975
|
+ save_all_epochs_thetafolder(folder_path, mu, tgen, title, theta_scale, input = title+"_plotdata.json", output = title+"_plotdata.json")
|
716
|
976
|
fig1.savefig(title+'_combined_p1.pdf')
|
717
|
977
|
fig2.savefig(title+'_combined_p2.pdf')
|
718
|
978
|
plot_raw_stairs(plot_lines = loaded_data['raw_stairs'],
|