Réimplémentation du programme DSSP en Python

atom.py 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346
  1. import math
  2. from structure import *
  3. class Atom:
  4. def dist_atoms(self, atom2):
  5. return(math.sqrt((self.coord_x-atom2.coord_x)**2 +
  6. (self.coord_y-atom2.coord_y)**2 +
  7. (self.coord_z-atom2.coord_z)**2))
  8. def __init__(self, atom_id, atom_name, res_name, chain_id,
  9. res_seq_nb, insertion_code, coordinates):
  10. self.atom_id = atom_id
  11. self.atom_name = atom_name
  12. self.res_name = res_name
  13. self.chain_id = chain_id
  14. self.res_seq_nb = res_seq_nb
  15. self.insertion_code = insertion_code
  16. self.coord_x = coordinates[0]
  17. self.coord_y = coordinates[1]
  18. self.coord_z = coordinates[2]
  19. self.coords = coordinates
  20. class Residue:
  21. def __init__(self, atoms_list):
  22. self.atoms = {}
  23. for atom in atoms_list:
  24. self.atoms[atom.atom_name] = atom
  25. self.resid = atom.res_seq_nb
  26. self.res_name = atom.res_name
  27. self.chain_id = atom.chain_id
  28. self.insertion_code = atom.insertion_code
  29. def h_bond(self, res2):
  30. if("H" not in res2.atoms.keys()):
  31. return(False)
  32. # dimensionnal factor, in kcal/mole
  33. f = 332
  34. # partial charges
  35. q1 = 0.42
  36. q2 = 0.20
  37. # distance between O-N atoms, in angströms
  38. r_ON = self.atoms["O"].dist_atoms(res2.atoms["N"])
  39. # distance between C-H atoms, in angströms
  40. r_CH = self.atoms["C"].dist_atoms(res2.atoms["H"])
  41. # distance between O-H atoms, in angströms
  42. r_OH = self.atoms["O"].dist_atoms(res2.atoms["H"])
  43. # distance between C-N atoms, in angströms
  44. r_CN = self.atoms["C"].dist_atoms(res2.atoms["N"])
  45. # electrostatic interaction energy, in kcal/mole
  46. E = q1*q2*(1/r_ON + 1/r_CH - 1/r_OH - 1/r_CN)*f
  47. return(E)
  48. def get_turns(self, residues):
  49. """
  50. Get all the turns from a specific residue.
  51. """
  52. turns = {}
  53. i = residues.index(self)
  54. k = 0
  55. for j in range(3,6):
  56. if(i+j<len(residues)):
  57. if(self.h_bond(residues[i+j])<-0.5):
  58. k = j
  59. if k != 0:
  60. #print(k,"TURN", residues[i].resid, residues[i+k].resid)
  61. return Turn(k,residues[i].resid)
  62. return False
  63. def get_bridges(self, residues):
  64. bridges = {}
  65. bridge = {}
  66. strongest_bridge = {}
  67. i = residues.index(self)
  68. if(i >= 1 and i < len(residues)-4):
  69. E_min = 0
  70. for j in range(i+2,len(residues)-1):
  71. # select triplet with the minimal energy
  72. if(residues[i-1].h_bond(residues[j])<-0.5
  73. and residues[j].h_bond(residues[i+1])<-0.5):
  74. bridge = {'res1':residues[i-1].h_bond(residues[j]),
  75. 'res2':residues[j].h_bond(residues[i+1]),
  76. 'ipos':residues[i].resid,
  77. 'jpos':residues[j].resid,
  78. 'btype':"para"}
  79. if(residues[j-1].h_bond(residues[i])<-0.5
  80. and residues[i].h_bond(residues[j+1])<-0.5):
  81. bridge = {'res1':residues[j-1].h_bond(residues[i]),
  82. 'res2':residues[i].h_bond(residues[j+1]),
  83. 'ipos':residues[i].resid,
  84. 'jpos':residues[j].resid,
  85. 'btype':"para"}
  86. if(residues[i].h_bond(residues[j])<-0.5
  87. and residues[j].h_bond(residues[i])<-0.5):
  88. bridge = {'res1':residues[i].h_bond(residues[j]),
  89. 'res2':residues[j].h_bond(residues[i]),
  90. 'ipos':residues[i].resid,
  91. 'jpos':residues[j].resid,
  92. 'btype':"anti"}
  93. if(residues[i-1].h_bond(residues[j+1])<-0.5
  94. and residues[j-1].h_bond(residues[i+1])<-0.5):
  95. bridge = {'res1':residues[i-1].h_bond(residues[j+1]),
  96. 'res2':residues[j-1].h_bond(residues[i+1]),
  97. 'ipos':residues[i].resid,
  98. 'jpos':residues[j].resid,
  99. 'btype':"anti"}
  100. if(bridge):
  101. if(bridge['res1']+bridge['res2']<E_min):
  102. E_min = bridge['res1']+bridge['res2']
  103. strongest_bridge = bridge
  104. bridge = {}
  105. coord_bridge = [i,j]
  106. # finally add the strongest bridge at i and j pos
  107. if(strongest_bridge):
  108. bridges[coord_bridge[0]] = (Bridge(strongest_bridge['btype'],
  109. strongest_bridge['ipos'],
  110. strongest_bridge['jpos']))
  111. bridges[coord_bridge[1]] = (Bridge(strongest_bridge['btype'],
  112. strongest_bridge['jpos'],
  113. strongest_bridge['ipos']))
  114. if(len(bridges)>0):
  115. return(bridges[coord_bridge[0]])
  116. else:
  117. return(False)
  118. def get_helix(self, residues):
  119. """
  120. Return if there is an helix at a given residue,
  121. as well as its type.
  122. """
  123. i = residues.index(self)
  124. # if there are no turns or it is the first residue, skip
  125. if i == 0:
  126. return False
  127. if(self.get_turns(residues) and residues[i-1].get_turns(residues)):
  128. print(self.get_turns(residues).turn_type,"- HELIX at", residues[i].resid)
  129. return(self.get_turns(residues).turn_type, residues[i].resid)
  130. return(False)
  131. def get_helix2(self, residues):
  132. """
  133. Return if there is an helix at a given residue,
  134. as well as its type.
  135. """
  136. i = residues.index(self)
  137. # if there are no turns or it is the first residue, skip
  138. if i == 0:
  139. return False
  140. if(i in turns.keys() and i-1 in turns.keys()):
  141. print(turns[i].turn_type,"- HELIX at", residues[i].resid)
  142. return(turns[i].turn_type, residues[i].resid)
  143. return(False)
  144. def get_ladders(self, residues, ladders={}):
  145. #ladders = {}
  146. i = residues.index(self)
  147. if i != 0:
  148. if self.get_bridges(residues):
  149. if (residues[i-1].get_bridges(residues)):
  150. local_bridge = self.get_bridges(residues)
  151. consec_bridge = residues[i-1].get_bridges(residues)
  152. if local_bridge.bridge_type == consec_bridge.bridge_type:
  153. print("ladder", consec_bridge.res_num, local_bridge.res_num)
  154. ladders[i] = {'start':i-1,
  155. 'end':i,
  156. 'bridges':[consec_bridge, local_bridge]}
  157. return ladders
  158. def get_ladder(self, residues):
  159. #ladders = {}
  160. i = residues.index(self)
  161. if i != 0:
  162. if self.get_bridges(residues):
  163. if (residues[i-1].get_bridges(residues)):
  164. local_bridge = self.get_bridges(residues)
  165. consec_bridge = residues[i-1].get_bridges(residues)
  166. if local_bridge.bridge_type == consec_bridge.bridge_type:
  167. #print("ladder", consec_bridge.res_num, local_bridge.res_num)
  168. ladder = {'start':consec_bridge.res_num,
  169. 'end':local_bridge.res_num,
  170. 'bridges':[consec_bridge, local_bridge]}
  171. return ladder
  172. return False
  173. def get_sheets(self, residues):
  174. """
  175. Bridges between ladders.
  176. Check if 1 bridge between one ladder and one or more other ladders.
  177. Iterate over all residues of one ladder and check if bridge with other residues
  178. of the other ladders.
  179. """
  180. sheets = {}
  181. sheet_start = residues.index(self)
  182. j=sheet_start
  183. k=2
  184. if(self.get_ladder(residues)):
  185. local_ladder = self.get_ladder(residues)
  186. while j < len(residues)-2:
  187. k = 2
  188. while residues[j+k].get_ladder(residues):
  189. if(residues[j+k].get_bridges(residues)):
  190. j = j+k
  191. k+=1
  192. if(k>):
  193. last = j
  194. j+=1
  195. print(j)
  196. if(k>2):
  197. sheet_end = last
  198. print("SHEET", sheet_start, sheet_end)
  199. def get_sheets2(self):
  200. """
  201. Bridges between ladders.
  202. Check if 1 bridge between one ladder and one or more other ladders.
  203. Iterate over all residues of one ladder and check if bridge with other residues
  204. of the other ladders.
  205. """
  206. sheets = {}
  207. for ladder in ladders:
  208. for ladd2 in ladders:
  209. for bridge in ladders[ladder]['bridges']:
  210. if bridge.res_partner in res_list(ladders[ladd2]):
  211. print("ladder",ladders[ladder]['start'], ladders[ladder]['end'],"bridge",bridge.res_num, bridge.res_partner,
  212. "ladder 2",ladders[ladd2]['start'], ladders[ladd2]['end'])
  213. #print("stop ladder 2")
  214. print("stop ladder 1")
  215. def get_ladders2(self, bridges, residues):
  216. ladders = {}
  217. i = residues.index(self)
  218. if i != 0:
  219. k = 1
  220. if i in bridges.keys():
  221. temp_bridges = [bridges[i]]
  222. while ((i+k in bridges.keys()) and
  223. (bridges[i].bridge_type == bridges[i+k].bridge_type)):
  224. temp_bridges.append(bridges[i+k])
  225. k+=1
  226. if k>1:
  227. print("ladder", bridges[i].res_num, bridges[i+k-1].res_num)
  228. ladders[i] = {'start':bridges[i].res_num,
  229. 'end':bridges[i+k-1].res_num,
  230. 'bridges':temp_bridges}
  231. i+=k-1
  232. else:
  233. i+=1
  234. return ladders
  235. def get_sheets(ladders):
  236. """
  237. Bridges between ladders.
  238. Check if 1 bridge between one ladder and one or more other ladders.
  239. Iterate over all residues of one ladder and check if bridge with other residues
  240. of the other ladders.
  241. """
  242. sheets = {}
  243. for ladder in ladders:
  244. for ladd2 in ladders:
  245. for bridge in ladders[ladder]['bridges']:
  246. if bridge.res_partner in res_list(ladders[ladd2]):
  247. print("ladder",ladders[ladder]['start'], ladders[ladder]['end'],"bridge",bridge.res_num, bridge.res_partner,
  248. "ladder 2",ladders[ladd2]['start'], ladders[ladd2]['end'])
  249. #print("stop ladder 2")
  250. print("stop ladder 1")
  251. def res_list(ladder):
  252. # TODO : method in ladder class
  253. l=[]
  254. for i in range(ladder['start'], ladder['end']):
  255. l.append(i)
  256. return(l)
  257. def get_bends(residues):
  258. bends = {}
  259. for i in range(2,len(residues)-2):
  260. angle = math.degrees(vector_angles(vectors_substr(position_vector(residues[i].atoms["CA"].coords),
  261. position_vector(residues[i-2].atoms["CA"].coords)),
  262. vectors_substr(position_vector(residues[i+2].atoms["CA"].coords),
  263. position_vector(residues[i].atoms["CA"].coords))))
  264. if(angle>70):
  265. print("angle", residues[i].resid, angle)
  266. bends[residues[i].resid] = angle
  267. return(bends)
  268. def get_chirality(residues):
  269. for i in range(1,len(residues)-2):
  270. chirality = {}
  271. angle = calc_dihedral(residues[i-1].atoms["CA"].coords,
  272. residues[i].atoms["CA"].coords,
  273. residues[i+1].atoms["CA"].coords,
  274. residues[i+2].atoms["CA"].coords)
  275. if(angle>0 and angle<=180):
  276. sign="+"
  277. print("chirality", residues[i].resid, "+", angle)
  278. if(angle<=0 and angle > -180):
  279. sign="-"
  280. print("chirality", residues[i].resid, "-", angle)
  281. chirality[residues[i].resid] = sign
  282. return chirality
  283. def get_phi_psi(residues):
  284. for i in range(len(residues)):
  285. if(i==0):
  286. phi = 360.0
  287. else:
  288. phi = calc_dihedral(residues[i-1].atoms["C"].coords,
  289. residues[i].atoms["N"].coords,
  290. residues[i].atoms["CA"].coords,
  291. residues[i].atoms["C"].coords)
  292. if(i==len(residues)-1):
  293. psi = 360.0
  294. else:
  295. psi = calc_dihedral(residues[i].atoms["N"].coords,
  296. residues[i].atoms["CA"].coords,
  297. residues[i].atoms["C"].coords,
  298. residues[i+1].atoms["N"].coords)
  299. print("ANGLES", i, phi, psi)
  300. def get_TCO(res1, res2):
  301. CO_res1 = vector_from_pos(res1.atoms["C"].coords,
  302. res1.atoms["O"].coords)
  303. CO_res2 = vector_from_pos(res2.atoms["C"].coords,
  304. res2.atoms["O"].coords)
  305. angle = vector_angles(CO_res1, CO_res2)
  306. return(math.cos(angle))